Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cosmet Dermatol ; 20(10): 3278-3288, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33896085

RESUMO

BACKGROUND: During melanogenesis, melanocytes produce melanin through enzymatic reactions. Microphthalmia-associated transcription factor (MITF) is a major regulator in controlling the expressions of melanogenic enzymes tyrosinase (TYR), tyrosine-related protein-1 (TRP1), and dopachrome tautomerase (DCT). Self-Growth Colony (SGC) is prepared from human platelet-rich plasma (PRP) having an enrichment of growth factors, and which has claimed skin regeneration function. AIM: In this study, we aim to identify and investigate the novel role of SGC in skin melanogenesis. METHODS: MTT assay was performed to determine the cytotoxicity of applied SGC. Melanin assay was adopted to quantify the intracellular melanin after SGC treatment. Promoter-driven luciferase assay, real-time PCR, and Western blotting were performed to determine the expressions of melanogenic enzymes and MITF in SGC-treated cultured Melan-A cells, being treated with or without UV induction. Ex vivo mouse skin was treated with SGC, and then was subjected to Western blotting and histochemical staining. RESULTS: We identified that SGC inhibited melanogenesis in cultured melanocytes and ex vivo mouse skin. The phenomena were attributed to a reduction of MITF expression, which subsequently down-regulated the melanogenic enzymes, that is, TYR, TRP1, and DCT. Moreover, ERK signaling was activated in the SGC-inhibited melanogenesis. CONCLUSIONS: The findings suggest that SGC extracting from human blood can be a safe and potential agent in promoting skin whitening.


Assuntos
Fator de Transcrição Associado à Microftalmia , Plasma Rico em Plaquetas , Animais , Melaninas , Melanócitos , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Extratos Vegetais
2.
Skin Pharmacol Physiol ; 34(2): 74-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556953

RESUMO

INTRODUCTION: Inspired by application of platelet-rich plasma (PRP) in skin treatment during injuries, an extracting method was developed here to recover high amounts of cytokines and growth factors from PRP; this prepared extract was named as self-growth colony (SGC). METHODS: In optimization of SGC preparation, various parameters were tested, for example, centrifugation force, freeze-thaw, sonication, and inclusion of calcium chelator. The amounts of cytokines and growth factors, including platelet factor 4, ß-thromboglobulin, epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, were measured by ELISA assay. RESULTS: By comparing to PRP, the prepared SGC contained a significant higher amount of measured growth factors. In addition, the degradation of growth factors within SGC during the storage was calibrated, which showed better stability as compared to that of PRP preparation. Having possible application in skin care, the optimized SGC was chemically standardized by using the enrichment of growth factors. Application of SGC in cultured keratinocytes stimulated the wound healing of injured cultures. In line to this notion, SGC was applied onto human skin, and thereafter the robust improvement of skin properties was revealed. CONCLUSIONS: The potential application of SGC in treating skin rejuvenation and ageing, as well as its elaborated application for medical purpose, that is, wound healing, was illustrated.


Assuntos
Envelhecimento/fisiologia , Técnicas Cosméticas , Plasma Rico em Plaquetas/citologia , Rejuvenescimento/fisiologia , Adulto , Idoso , Movimento Celular , Citocinas/administração & dosagem , Estabilidade de Medicamentos , Feminino , Células HaCaT , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...