Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 161(4): 2075-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23439916

RESUMO

Heat acclimation improves the tolerance of organisms to severe heat stress. Our previous work showed that in Arabidopsis (Arabidopsis thaliana), the "memory" of heat acclimation treatment decayed faster in the absence of the heat-stress-associated 32-kD protein HSA32, a heat-induced protein predominantly found in plants. The HSA32 null mutant attains normal short-term acquired thermotolerance but is defective in long-term acquired thermotolerance. To further explore this phenomenon, we isolated Arabidopsis defective in long-term acquired thermotolerance (dlt) mutants using a forward genetic screen. Two recessive missense alleles, dlt1-1 and dlt1-2, encode the molecular chaperone heat shock protein101 (HSP101). Results of immunoblot analyses suggest that HSP101 enhances the translation of HSA32 during recovery after heat treatment, and in turn, HSA32 retards the decay of HSP101. The dlt1-1 mutation has little effect on HSP101 chaperone activity and thermotolerance function but compromises the regulation of HSA32. In contrast, dlt1-2 impairs the chaperone activity and thermotolerance function of HSP101 but not the regulation of HSA32. These results suggest that HSP101 has a dual function, which could be decoupled by the mutations. Pulse-chase analysis showed that HSP101 degraded faster in the absence of HSA32. The autophagic proteolysis inhibitor E-64d, but not the proteasome inhibitor MG132, inhibited the degradation of HSP101. Ectopic expression of HSA32 confirmed its effect on the decay of HSP101 at the posttranscriptional level and showed that HSA32 was not sufficient to confer long-term acquired thermotolerance when the HSP101 level was low. Taken together, we propose that a positive feedback loop between HSP101 and HSA32 at the protein level is a novel mechanism for prolonging the memory of heat acclimation.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Aclimatação/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Cruzamentos Genéticos , Cicloeximida/farmacologia , Epistasia Genética/efeitos dos fármacos , Metanossulfonato de Etila , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Leucina/análogos & derivados , Leucina/farmacologia , Luciferases/metabolismo , Mutação de Sentido Incorreto/genética , Fenótipo , Plantas Geneticamente Modificadas , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Tempo
2.
Plant Physiol Biochem ; 47(8): 732-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19362490

RESUMO

Powdery mildews (Erysiphales) are obligate biotrophic pathogens that invade susceptible plant cells without triggering cell death. This suggests a highly adept mechanism of parasitism which enables powdery mildews to avoid detection or evade defenses by their host. To better understand this plant-pathogen interaction, we employed suppression subtractive hybridization (SSH), differential hybridization and quantitative real-time (qRT) PCR for the identification of grapevine (Vitis vinifera L.) genes that were specifically up-regulated in response to the grape powdery mildew Erysiphe necator Schwein. We identified 25 grapevine transcripts that increased in abundance upon infection in leaves of the susceptible host V. vinifera Cabernet Sauvignon. Despite the compatible interaction between the pathogen and plant, several of the E. necator-induced transcripts represented typical defense response genes. Among the transcripts identified were those that encoded a leucine-rich repeat serine/threonine kinase-like receptor, an MYB transcription factor, and two ubiquitination-associated proteins, indicating the stimulation of intracellular signal transduction and regulatory functions. A number of genes characteristic of senescence processes, including metallothioneins, a deoxyribonuclease, an aspartyl protease and a subtilase-like serine protease, also were identified. These transcripts expanded the list of previously identified E. necator-responsive grapevine genes and facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.


Assuntos
Ascomicetos/patogenicidade , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Transcrição Gênica , Vitis/genética , Expressão Gênica , Hibridização de Ácido Nucleico , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Regulação para Cima , Vitis/parasitologia
3.
Plant Cell Environ ; 32(7): 917-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19302169

RESUMO

Plant temperature-induced lipocalins (TILs) have been shown to be responsive to heat stress (HS), but the nature of this response was unknown. In this study, a reverse genetic approach was taken to elucidate the role of Arabidopsis TIL1 (At5g58070) in thermotolerance. A T-DNA knock-out line of TIL1 (til1-1) showed severe defects in basal (BT) and acquired thermotolerance (AT), which could be complemented by introducing the wild-type gene. However, over-expression of TIL1 did not significantly enhance thermotolerance in transgenic plants. TIL1 is peripherally associated with plasma membrane. Transcriptomic analysis showed that the heat shock response in til1-1 seedlings was about the same as in the wild-type plants except the expression of TIL1. The level of TIL1 did not affect the temperature threshold for heat shock protein induction. Ion leakage analysis revealed no significant difference in membrane stability between the wild-type and til1-1 seedlings. These results suggest that TIL1 is not involved in regulating membrane fluidity or stability. Nevertheless, the mutant plants were also more sensitive than the wild type to tert-butyl hydroperoxide, a reagent that induces lipid peroxidation. Taken together, these data indicate that TIL1 is an essential component for thermotolerance and probably functions by acting against lipid peroxidation induced by severe HS.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Resposta ao Choque Térmico , Lipocalinas/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Temperatura Alta , Peroxidação de Lipídeos , Lipocalinas/genética , Lipocalinas/metabolismo , Fluidez de Membrana , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , RNA de Plantas/genética , terc-Butil Hidroperóxido/farmacologia
4.
Plant Physiol ; 146(1): 236-49, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993546

RESUMO

Grapevines exhibit a wide spectrum of resistance to the powdery mildew fungus (PM), Erysiphe necator (Schw.) Burr., but little is known about the transcriptional basis of the defense to PM. Our microscopic observations showed that PM produced less hyphal growth and induced more brown-colored epidermal cells on leaves of PM-resistant Vitis aestivalis 'Norton' than on leaves of PM-susceptible Vitis vinifera 'Cabernet sauvignon'. We found that endogenous salicylic acid levels were higher in V. aestivalis than in V. vinifera in the absence of the fungus and that salicylic acid levels increased in V. vinifera at 120 h postinoculation with PM. To test the hypothesis that gene expression differences would be apparent when V. aestivalis and V. vinifera were mounting a response to PM, we conducted a comprehensive Vitis GeneChip analysis. We examined the transcriptome at 0, 4, 8, 12, 24, and 48 h postinoculation with PM. We found only three PM-responsive transcripts in V. aestivalis and 625 in V. vinifera. There was a significant increase in the abundance of transcripts encoding ENHANCED DISEASE SUSCEPTIBILITY1, mitogen-activated protein kinase kinase, WRKY, PATHOGENESIS-RELATED1, PATHOGENESIS-RELATED10, and stilbene synthase in PM-infected V. vinifera, suggesting an induction of the basal defense response. The overall changes in the PM-responsive V. vinifera transcriptome also indicated a possible reprogramming of metabolism toward the increased synthesis of the secondary metabolites. These results suggested that resistance to PM in V. aestivalis was not associated with overall reprogramming of the transcriptome. However, PM induced defense-oriented transcriptional changes in V. vinifera.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Vitis/genética , Vitis/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Predisposição Genética para Doença , Genótipo , Interações Hospedeiro-Patógeno , Fatores de Tempo
5.
J Plant Physiol ; 163(10): 1049-60, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16376455

RESUMO

Methyl salicylate (MeSA) vapor increased resistance against chilling injury (CI) in freshly harvested pink tomatoes. The expression patterns of alternative oxidase (AOX) before and during the chilling period demonstrated that pre-treatment of tomato fruit with MeSA vapor increased the transcript levels of AOX. We used 4 EST tomato clones of AOX from the public database that belong to two distinctly related families, 1 and 2 defined in plants. Three clones were designated as LeAOX1a, 1b and 1c and the fourth clone as LeAOX2. Using RT-PCR, 1a and 1b genes were found to be expressed in leaf, root and fruit tissues, but 1c was expressed preferentially in roots. RNA transcript from LeAOX1a of AOX subfamily 1 was present in much greater abundance than 1b or 1c. The presence of longer AOX transcripts detected by RNA gel blot analysis in cold-stored tomato fruit was confirmed to be the un-spliced pre-mRNA transcripts of LeAOX1a and LeAOX1b genes. Intron splicing of LeAOX1c gene was also affected by cold storage when it was detected in roots. This alternative splicing event in AOX pre-mRNAs molecules occurred, preferentially at low temperature, regardless of mRNA abundance. Transcript levels of several key genes involved in RNA processing (splicing factors: 9G8-SR and SF2-SR, fibrillarin and DEAD box RNA helicase) were also affected by changes in storage temperature. The aberrant splicing event in AOX pre-mRNA and its possible association with the change in expression of genes involved in RNA processing in tomato fruit having chilling disorder was discussed.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredutases/genética , Salicilatos/farmacologia , Solanum lycopersicum/genética , Processamento Alternativo , Congelamento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/enzimologia , Proteínas Mitocondriais , Oxilipinas , Proteínas de Plantas , RNA Mensageiro/genética
6.
J Mol Evol ; 54(3): 322-32, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11847558

RESUMO

We present phylogenetic analyses to demonstrate that there are three families of sucrose phosphate synthase (SPS) genes present in higher plants. Two data sets were examined, one consisting of full-length proteins and a second larger set that covered a highly conserved region including the 14-3-3 binding region and the UDPGlu active site. Analysis of both datasets showed a well supported separation of known genes into three families, designated A, B, and C. The genomic sequences of Arabidopsis thaliana include a member in each family: two genes on chromosome 5 belong to Family A, one gene on chromosome 1 to Family B, and one gene on chromosome 4 to Family C. Each of three Citrus genes belong to one of the three families. Intron/exon organization of the four Arabidopsis genes differed according to phylogenetic analysis, with members of the same family from different species having similar genomic organization of their SPS genes. The two Family A genes on Arabidopsis chromosome 5 appear to be due to a recent duplication. Analysis of published literature and ESTs indicated that functional differentiation of the families was not obvious, although B family members appear not to be expressed in roots. B family genes were cloned from two Actinidia species and southern analysis indicated the presence of a single gene family, which contrasts to the multiple members of Family A in Actinidia. Only two family C genes have been reported to date.


Assuntos
Genes de Plantas , Glucosiltransferases/genética , Família Multigênica , Actinidia/classificação , Actinidia/genética , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Evolução Molecular , Íntrons , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...