Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 1(10): 1541-1555, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723258

RESUMO

Heme is essential for the survival of virtually all living systems-from bacteria, fungi, and yeast, through plants to animals. No eukaryote has been identified that can survive without heme. There are thousands of different proteins that require heme in order to function properly, and these are responsible for processes such as oxygen transport, electron transfer, oxidative stress response, respiration, and catalysis. Further to this, in the past few years, heme has been shown to have an important regulatory role in cells, in processes such as transcription, regulation of the circadian clock, and the gating of ion channels. To act in a regulatory capacity, heme needs to move from its place of synthesis (in mitochondria) to other locations in cells. But while there is detailed information on how the heme lifecycle begins (heme synthesis), and how it ends (heme degradation), what happens in between is largely a mystery. Here we summarize recent information on the quantification of heme in cells, and we present a discussion of a mechanistic framework that could meet the logistical challenge of heme distribution.

2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035176

RESUMO

In addition to heme's role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.


Assuntos
Heme/análise , Heme/metabolismo , Técnicas de Sonda Molecular , Ascorbato Peroxidases , Escherichia coli , Proteínas de Fluorescência Verde
3.
Anal Biochem ; 572: 45-51, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807737

RESUMO

Accumulating evidence suggests a new role for cellular heme as a signalling molecule, in which interactions with target proteins are more transient than found with traditionally-defined hemoproteins. To study this role, a precise method is needed for determining the heme-binding affinity (or dissociation constant, Kd). Estimates of Kd are commonly made following a spectrophotometric titration of an apo-protein with hemin. An impediment to precise determination is, however, the challenge in discriminating between the Soret absorbance for the product (holo-protein) and that for the titrant (hemin). An altogether different approach has been used in this paper to separate contributions made by these components to absorbance values. The pure component spectra and concentration profiles are estimated by a multivariate curve-resolution (MCR) algorithm. This approach has significant advantages over existing methods. First, a more precise determination of Kd can be made as concentration profiles for all three components (apo-protein/holo-protein/hemin) are determined and can be simultaneously fitted to a theoretical-binding model. Second, an absorption spectrum for the holo-protein is calculated. This is a unique advantage of MCR and attractive for investigating proteins in which the nature of heme binding has not, hitherto, been characterised because the holo-protein spectrum provides information on the interaction.


Assuntos
Heme/metabolismo , Hemina/metabolismo , Algoritmos , Heme/química , Hemina/química , Mioglobina/química , Mioglobina/metabolismo , Ligação Proteica , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...