Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291039

RESUMO

Cellular iron supply is required for various biochemical processes. Measuring bioavailable iron in cells aids in obtaining a better understanding of its biochemical activities but is technically challenging. Existing techniques have several constraints that make precise localization difficult, and the lack of a functional readout makes it unclear whether the tested labile iron is available for metalloproteins. Here, we use geNOps; a ferrous iron-dependent genetically encoded fluorescent nitric oxide (NO) biosensor, to measure available iron in cellular locales. We exploited the nitrosylation-dependent fluorescence quenching of geNOps as a direct readout for cellular iron absorption, distribution, and availability. Our findings show that, in addition to ferrous iron salts, the complex of iron (III) with N,N'-bis (2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) can activate the iron (II)-dependent NO probe within intact cells. Cell treatment for only 20 min with iron sucrose was also sufficient to activate the biosensor in the cytosol and mitochondria significantly; however, ferric carboxymaltose failed to functionalize the probe, even after 2 h of cell treatment. Our findings show that the geNOps approach detects available iron (II) in cultured cells and can be applied to assay functional iron (II) at the (sub)cellular level.


Assuntos
Técnicas Biossensoriais , Metaloproteínas , Ferro , Óxido Nítrico , Ácido Edético , Óxido de Ferro Sacarado , Sais , Etilenodiaminas
3.
Eur J Pharm Biopharm ; 174: 56-76, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35337966

RESUMO

Intravenously administered iron-carbohydrate preparations are a structurally heterogenous class of nanomedicines. Iron biodistribution to target tissues is greatly affected by the physicochemical characteristics of these nanoparticles. Some regulatory agencies have recommended performing studies in animal models for biodistribution characterization and bioequivalence evaluation. In the present work, a systematic comparison of iron exposure, tissue biodistribution and pharmacodynamics of four intravenous iron-carbohydrates in anemic CD rats was conducted. A pilot study was performed to establish the anemic rat model, followed by a control study to evaluate the pharmacokinetics (serum iron, biodistribution) and pharmacodynamics (hematological parameters) in healthy and anemic controls and anemic rats receiving ferric carboxymaltose (FCM). The same parameters were then evaluated in a comparative study in anemic rats receiving FCM, iron sucrose (IS), iron isomaltoside 1000 (IIM), and iron dextran (ID). Despite similar serum iron profiles observed across the investigated nanomedicines, tissue iron biodistribution varied markedly between the individual intravenous iron-carbohydrate complexes. Tissue iron repletion differences were also confirmed by histopathology. These results suggest that employing serum iron profiles as a surrogate for tissue biodistribution may be erroneous. The variability observed in tissue biodistribution may indicate different pharmacodynamic profiles and warrants further study.


Assuntos
Ferro , Nanomedicina , Animais , Carboidratos , Compostos Férricos/química , Maltose , Projetos Piloto , Ratos , Distribuição Tecidual
4.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269805

RESUMO

Intravenous (IV) iron nanoparticle preparations are widely used to treat iron deficiency. The mechanism of mononuclear phagocyte system-mediated clearance of IV iron nanoparticles is unknown. The early uptake and homeostasis of iron after injection of ferric carboxymaltose (FCM) in mice was studied. An increase in serum iron was observed at 2.5 h followed by a return to baseline by 24 h. An increase in circulating monocytes was observed, particularly Ly6Chi and Ly6Clow. FCM was also associated with a time-dependent decrease in liver Kupffer cells (KCs) and increase in liver monocytes. The increase in liver monocytes suggests an influx of iron-rich blood monocytes, while some KCs underwent apoptosis. Adoptive transfer experiments demonstrated that following liver infiltration, blood monocytes differentiated to KCs. KCs were also critical for IV iron uptake and biodegradation. Indeed, anti-Colony Stimulating Factor 1 Receptor (CSF1R)-mediated depletion of KCs resulted in elevated serum iron levels and impaired iron uptake by the liver. Gene expression profiling indicated that C-C chemokine receptor type 5 (CCR5) might be involved in monocyte recruitment to the liver, confirmed by pharmaceutical inhibition of CCR5. Liver KCs play a pivotal role in the clearance and storage of IV iron and KCs appear to be supported by the expanded blood monocyte population.


Assuntos
Células de Kupffer , Nanopartículas , Animais , Carboidratos , Ferro/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Camundongos , Monócitos/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216261

RESUMO

Un-complexed polynuclear ferric oxyhydroxide cannot be administered safely or effectively to patients. When polynuclear iron cores are formed with carbohydrates of various structures, stable complexes with surface carbohydrates driven by multiple interacting sites and forces are formed. These complexes deliver iron in a usable form to the body while avoiding the serious adverse effects of un-complexed forms of iron, such as polynuclear ferric oxyhydroxide. The rate and extent of plasma clearance and tissue biodistribution is variable among the commercially available iron-carbohydrate complexes and is driven principally by the surface characteristics of the complexes which dictate macrophage opsonization. The surface chemistry differences between the iron-carbohydrate complexes results in significant differences in in vivo pharmacokinetic and pharmacodynamic profiles as well as adverse event profiles, demonstrating that the entire iron-carbohydrate complex furnishes the pharmacologic action for these complex products. Currently available physicochemical characterization methods have limitations in biorelevant matrices resulting in challenges in defining critical quality attributes for surface characteristics for this class of complex nanomedicines.


Assuntos
Carboidratos/farmacologia , Carboidratos/farmacocinética , Compostos de Ferro/farmacologia , Compostos de Ferro/farmacocinética , Ferro/farmacologia , Ferro/farmacocinética , Nanopartículas/metabolismo , Administração Intravenosa/métodos , Animais , Compostos Férricos/metabolismo , Humanos
6.
ESC Heart Fail ; 8(6): 5445-5455, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636175

RESUMO

AIMS: Iron deficiency is frequently observed in patients with acute coronary syndrome and associates with poor prognosis after acute myocardial infarction (AMI). Anaemia is linked to dysregulation of iron metabolism, red blood cell dysfunction, and increased reactive oxygen species generation. Iron supplementation in chronic heart failure is safe and improves cardiac exercise capacity. Increases in iron during ischaemia or immediately after reperfusion are associated with detrimental effects on left ventricular (LV) function. The safety and applicability of iron during or immediately after reperfusion of AMI in anaemia are not known. We aimed to study the safety and efficacy of iron supplementation within 1 h or deferred to 24 h after reperfusion of AMI by analysing LV function and infarct size. METHODS AND RESULTS: In a mouse model of moderate blood loss anaemia (n = 6-8 mice/group), the effects of iron supplementation (20 mg iron as ferric carboxymaltose per kg body weight) within 1 h and deferred to 24 h after ischaemia/reperfusion were assessed. Cardiac function was analysed in vivo by echocardiography at baseline (Day 3) with and without anaemia, after AMI (24 h), and after administration of intravenous iron. Anaemia was characterized by iron deficiency and a trend towards increased haemolysis, which was supported by increased plasma free-haemoglobin [sham vs. anaemia (n = 8/group): P < 0.05]. Anaemia increased heart rate, LV end-diastolic volume, stroke volume, and cardiac output, while LV end-systolic volume remained unchanged at baseline. Superimposition of AMI deteriorated global LV function, whereas infarct sizes remained unaffected [sham vs. anaemia (n = 6/group): P = 0.9]. Deferred iron supplementation 24 h after ischaemia/reperfusion resulted in reversal of end-systolic volume increase and reduced infarct size [% of area at risk: sham vs. anaemia + iron after 24 h; (n = 6/group); 48 ± 7 vs. 38 ± 7; P < 0.05], whereas administration within 1 h after reperfusion was neutral [sham vs. anaemia + iron; (n = 6/group); 48 ± 7 vs. 42 ± 8; P = 0.56]. Moreover, iron application after reperfused AMI showed unaltered mortality compared with sham. CONCLUSIONS: Iron supplementation 24 h after reperfusion of AMI is safe and reversed enlargement of end-systolic volume after AMI resulting in increased stroke volume and cardiac output. This highlights its potential as adjunctive treatment in anaemia with ID after reperfused AMI. Time point of iron application after reperfusion appears critical.


Assuntos
Anemia , Infarto do Miocárdio , Animais , Suplementos Nutricionais , Coração , Humanos , Ferro , Camundongos , Infarto do Miocárdio/complicações
7.
Nephrol Dial Transplant ; 35(10): 1689-1699, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022710

RESUMO

INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.


Assuntos
Modelos Animais de Doenças , Compostos Férricos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Sacarose/uso terapêutico , Calcificação Vascular/prevenção & controle , Animais , Combinação de Medicamentos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Falência Renal Crônica/complicações , Masculino , Fósforo/sangue , Ratos , Ratos Wistar , Calcificação Vascular/etiologia
8.
Nephrol Dial Transplant ; 35(6): 946-954, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259248

RESUMO

BACKGROUND: The iron-based phosphate binders, sucroferric oxyhydroxide (SFOH) and ferric citrate (FC), effectively lower serum phosphorus in clinical studies, but gastrointestinal iron absorption from these agents appears to differ. We compared iron uptake and tissue accumulation during treatment with SFOH or FC using experimental rat models. METHODS: Iron uptake was evaluated during an 8-h period following oral administration of SFOH, FC, ferrous sulphate (oral iron supplement) or control (methylcellulose vehicle) in rat models of anaemia, iron overload and inflammation. A 13-week study evaluated the effects of SFOH and FC on iron accumulation in different organs. RESULTS: In the pharmacokinetic experiments, there was a minimal increase in serum iron with SFOH versus control during the 8-h post-treatment period in the iron overload and inflammation rat models, whereas a moderate increase was observed in the anaemia model. Significantly greater increases (P < 0.05) in serum iron were observed with FC versus SFOH in the rat models of anaemia and inflammation. In the 13-week iron accumulation study, total liver iron content was significantly higher in rats receiving FC versus SFOH (P < 0.01), whereas liver iron content did not differ between rats in the SFOH and control groups. CONCLUSIONS: Iron uptake was higher from FC versus SFOH following a single dose in anaemia, iron overload and inflammation rat models and 13 weeks of treatment in normal rats. These observations likely relate to different physicochemical properties of SFOH and FC and suggest distinct mechanisms of iron absorption from these two phosphate binders.


Assuntos
Anemia/tratamento farmacológico , Compostos Férricos/administração & dosagem , Inflamação/tratamento farmacológico , Sobrecarga de Ferro/tratamento farmacológico , Ferro/farmacocinética , Sacarose/administração & dosagem , Administração Oral , Anemia/patologia , Animais , Combinação de Medicamentos , Feminino , Inflamação/patologia , Sobrecarga de Ferro/patologia , Cinética , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Distribuição Tecidual
9.
PLoS Comput Biol ; 15(8): e1006948, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393867

RESUMO

From the microscopic to the macroscopic level, biological life exhibits directed migration in response to environmental conditions. Chemotaxis enables microbes to sense and move towards nutrient-rich regions or to avoid toxic ones. Socio-economic factors drive human populations from rural to urban areas. The effect of collective movement is especially significant when triggered in response to the generation of public goods. Microbial communities can, for instance, alter their environment through the secretion of extracellular substances. Some substances provide antibiotic-resistance, others provide access to nutrients or promote motility. However, in all cases the maintenance of public goods requires costly cooperation and is consequently susceptible to exploitation. The threat of exploitation becomes even more acute with motile individuals because defectors can avoid the consequences of their cheating. Here, we propose a model to investigate the effects of targeted migration and analyze the interplay between social conflicts and migration in ecological public goods. In particular, individuals can locate attractive regions by moving towards higher cooperator densities or avoid unattractive regions by moving away from defectors. Both migration patterns not only shape an individual's immediate environment but also affects the entire population. For example, defectors hunting cooperators have a homogenizing effect on population densities. This limits the production of the public good and hence inhibits the growth of the population. In contrast, aggregating cooperators promote the spontaneous formation of patterns through heterogeneous density distributions. The positive feedback between cooperator aggregation and public goods production, however, poses analytical and numerical challenges due to its tendency to develop discontinuous distributions. Thus, different modes of directed migration bear the potential to enhance or inhibit the emergence of complex and sometimes dynamic spatial arrangements. Interestingly, whenever patterns emerge, cooperation is promoted, on average, population densities rise, and the risk of extinction is reduced.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Modelos Biológicos , Dinâmica Populacional , Biologia Computacional , Ecossistema , Humanos , Interações Microbianas , Microbiota , Dinâmica Populacional/estatística & dados numéricos
10.
Biomed Res Int ; 2015: 515606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26221597

RESUMO

Elevated serum phosphorus, calcium, and fibroblast growth factor 23 (FGF23) levels are associated with cardiovascular disease in chronic renal disease. This study evaluated the effects of sucroferric oxyhydroxide (PA21), a new iron-based phosphate binder, versus lanthanum carbonate (La) and sevelamer carbonate (Se), on serum FGF23, phosphorus, calcium, and intact parathyroid hormone (iPTH) concentrations, and the development of vascular calcification in adenine-induced chronic renal failure (CRF) rats. After induction of CRF, renal function was significantly impaired in all groups: uremic rats developed severe hyperphosphatemia, and serum iPTH increased significantly. All uremic rats (except controls) then received phosphate binders for 4 weeks. Hyperphosphatemia and increased serum iPTH were controlled to a similar extent in all phosphate binder-treatment groups. Only sucroferric oxyhydroxide was associated with significantly decreased FGF23. Vascular calcifications of the thoracic aorta were decreased by all three phosphate binders. Calcifications were better prevented at the superior part of the thoracic and abdominal aorta in the PA21 treated rats. In adenine-induced CRF rats, sucroferric oxyhydroxide was as effective as La and Se in controlling hyperphosphatemia, secondary hyperparathyroidism, and vascular calcifications. The role of FGF23 in calcification remains to be confirmed.


Assuntos
Compostos Férricos/uso terapêutico , Homeostase , Falência Renal Crônica/tratamento farmacológico , Lantânio/uso terapêutico , Fosfatos/metabolismo , Sevelamer/uso terapêutico , Sacarose/uso terapêutico , Calcificação Vascular/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Combinação de Medicamentos , Compostos Férricos/farmacologia , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Homeostase/efeitos dos fármacos , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Falência Renal Crônica/urina , Lantânio/farmacologia , Masculino , Mortalidade , Ratos Wistar , Sevelamer/farmacologia , Sacarose/farmacologia , Calcificação Vascular/sangue , Calcificação Vascular/complicações , Calcificação Vascular/urina
11.
Biometals ; 28(4): 615-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25801756

RESUMO

The advantage of the new generation IV iron preparations ferric carboxymaltose (FCM), ferumoxytol (FMX), and iron isomaltoside 1000 (IIM) is that they can be administered in relatively high doses in a short period of time. We investigated the physico-chemical properties of these preparations and compared them with those of the older preparations iron sucrose (IS), sodium ferric gluconate (SFG), and low molecular weight iron dextran (LMWID). Mössbauer spectroscopy, X-ray diffraction, and Fe K-edge X-ray absorption near edge structure spectroscopy indicated akaganeite structures (ß-FeOOH) for the cores of FCM, IIM and IS, and a maghemite (γ-Fe2O3) structure for that of FMX. Nuclear magnetic resonance studies confirmed the structure of the carbohydrate of FMX as a reduced, carboxymethylated, low molecular weight dextran, and that of IIM as a reduced Dextran 1000. Polarography yielded significantly different fingerprints of the investigated compounds. Reductive degradation kinetics of FMX was faster than that of FCM and IIM, which is in contrast to the high stability of FMX towards acid degradation. The labile iron content, i.e. the amount of iron that is only weakly bound in the polynuclear iron core, was assessed by a qualitative test that confirmed decreasing labile iron contents in the order SFG ≈ IS > LMWID ≥ FMX ≈ IIM ≈ FCM. The presented data are a step forward in the characterization of these non-biological complex drugs, which is a prerequisite to understand their cellular uptake mechanisms and the relationship between the structure and physiological safety as well as efficacy of these complexes.


Assuntos
Dissacarídeos/química , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Compostos de Ferro/química , Maltose/análogos & derivados , Físico-Química , Dissacarídeos/síntese química , Compostos Férricos/síntese química , Óxido Ferroso-Férrico/síntese química , Compostos de Ferro/síntese química , Maltose/síntese química , Maltose/química , Difração de Raios X
12.
Chemother Res Pract ; 2014: 570241, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24876963

RESUMO

Since anthracycline-induced cardiotoxicity (AIC), a complication of anthracycline-based chemotherapies, is thought to involve iron, concerns exist about using iron for anaemia treatment in anthracycline-receiving cancer patients. This study evaluated how intravenous ferric carboxymaltose (FCM) modulates the influence of iron deficiency anaemia (IDA) and doxorubicin (3-5 mg per kg body weight [BW]) on oxidative/nitrosative stress, inflammation, and cardiorenal function in spontaneously hypertensive stroke-prone (SHR-SP) rats. FCM was given as repeated small or single total dose (15 mg iron per kg BW), either concurrent with or three days after doxorubicin. IDA (after dietary iron restriction) induced cardiac and renal oxidative stress (markers included malondialdehyde, catalase, Cu,Zn-superoxide dismutase, and glutathione peroxidase), nitrosative stress (inducible nitric oxide synthase and nitrotyrosine), inflammation (tumour necrosis factor-alpha and interleukin-6), and functional/morphological abnormalities (left ventricle end-diastolic and end-systolic diameter, fractional shortening, density of cardiomyocytes and capillaries, caveolin-1 expression, creatinine clearance, and urine neutrophil gelatinase-associated lipocalin) that were aggravated by doxorubicin. Notably, iron treatment with FCM did not exacerbate but attenuated the cardiorenal effects of IDA and doxorubicin independent of the iron dosing regimen. The results of this model suggest that intravenous FCM can be used concomitantly with an anthracycline-based chemotherapy without increasing signs of AIC.

13.
Clin Nephrol ; 81(4): 251-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24656315

RESUMO

AIMS: Hyperphosphatemia in advanced chronic kidney disease (CKD) necessitates the use of phosphate binders. This in vitro study assessed phosphate binding and Fe release properties of the novel iron-based phosphate binder PA21. MATERIALS AND METHODS: Phosphate adsorption and Fe release were assessed under conditions simulating administration of PA21 on an empty stomach and full stomach across a pH range to which PA21 would be exposed during passage through the gastrointestinal (GI) tract. RESULTS: PA21 showed a robust phosphate binding capacity over the entire physiologically relevant pH range. The high binding capacity at low pH indicates that phosphate binding could begin in the stomach. Under the current experimental setting, the maximal bound phosphate to Fe ratio was 0.47 mmol P/mmol Fe. The largest amount of Fe release was observed at the lowest pH without phosphate and was much lower in the presence of phosphate. These results are in line with the formation of iron phosphate at low pH, as indicated by X-ray photoelectron spectroscopy and thermodynamic calculations. Fe release was minimal (≤ 0.35%) across pH 2.5 - 8.5. CONCLUSIONS: These studies demonstrate that PA21 has potent phosphate binding capacity and low iron release over a physiologically relevant pH range in the GI tract. These features indicate PA21 could be an effective alternative phosphate binder for CKD patients.


Assuntos
Compostos Férricos/farmacologia , Hiperfosfatemia/tratamento farmacológico , Sobrecarga de Ferro/tratamento farmacológico , Ferro/metabolismo , Concentração de Íons de Hidrogênio , Hiperfosfatemia/etiologia , Técnicas In Vitro , Sobrecarga de Ferro/etiologia , Falência Renal Crônica/terapia , Termodinâmica
14.
Curr Drug Metab ; 15(10): 953-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25658128

RESUMO

Sucroferric oxyhydroxide (VELPHORO) is a polynuclear iron-based phosphate binder recently approved for the treatment of hyperphosphataemia in patients with chronic kidney disease (CKD). As a number of the available phosphate binders do not provide the optimal combination of good efficacy, adequate tolerability and low pill burden, sucroferric oxyhydroxide constitutes a promising alternative. Among the attributes of an ideal phosphate binder is minimal absorption and, hence, low risk of systemic toxicity. Accordingly, the iron-releasing properties and absorption, distribution, metabolism and excretion (ADME) profile of sucroferric oxyhydroxide, as well as the possibility of iron accumulation and toxicity, were investigated in a series of preclinical studies. The effect of sucroferric oxyhydroxide on the progression of vascular calcification was also investigated. Sucroferric oxyhydroxide exhibited a high phosphate-binding capacity and low iron-releasing properties across the physiological pH range found in the gastrointestinal tract. In the ADME studies, uptake of (59)Fe-radiolabelled sucroferric oxyhydroxide was low in rats and dogs (<1% from a 50 mg Fe/kg bodyweight dose), with the majority of absorbed iron located in red blood cells. Long-term (up to 2 years) administration of sucroferric oxyhydroxide in rats and dogs was associated with modest increases in tissue iron levels and no iron toxicity. Moreoever, in uraemic rats, sucroferric oxyhydroxide was associated with reduced progression of vascular calcification compared with calcium carbonate. In conclusion, sucroferric oxyhydroxide offers a new option for the treatment of hyperphosphataemia, with a high phosphate-binding capacity, minimal iron release, and low potential for iron accumulation and toxicity.


Assuntos
Quelantes/farmacocinética , Compostos Férricos/farmacocinética , Hiperfosfatemia/tratamento farmacológico , Rim/metabolismo , Fosfatos/sangue , Insuficiência Renal Crônica/complicações , Sacarose/farmacocinética , Animais , Quelantes/administração & dosagem , Quelantes/efeitos adversos , Modelos Animais de Doenças , Cães , Combinação de Medicamentos , Compostos Férricos/administração & dosagem , Compostos Férricos/efeitos adversos , Absorção Gastrointestinal , Humanos , Hiperfosfatemia/sangue , Hiperfosfatemia/etiologia , Hiperfosfatemia/fisiopatologia , Rim/fisiopatologia , Ratos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia , Medição de Risco , Sacarose/administração & dosagem , Sacarose/efeitos adversos , Uremia/sangue , Uremia/fisiopatologia , Calcificação Vascular/sangue , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle
15.
J Pharmacol Exp Ther ; 346(2): 281-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23697346

RESUMO

Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.


Assuntos
Compostos Férricos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Adenina , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Pressão Sanguínea/efeitos dos fármacos , Cálcio/sangue , Carbonato de Cálcio/uso terapêutico , Fatores de Crescimento de Fibroblastos/sangue , Frequência Cardíaca/efeitos dos fármacos , Falência Renal Crônica/induzido quimicamente , Falência Renal Crônica/patologia , Masculino , Hormônio Paratireóideo/sangue , Fósforo/sangue , Ratos , Ratos Wistar , Calcificação Vascular/patologia
16.
Arzneimittelforschung ; 60(6a): 345-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20648926

RESUMO

An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow the administration of high doses as a single infusion or bolus injection, which will enhance the cost-effectiveness and convenience of iron replacement therapy. In conclusion, FCM has many of the characteristics of an ideal intravenous iron preparation.


Assuntos
Compostos Férricos/química , Compostos Férricos/uso terapêutico , Maltose/análogos & derivados , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Compostos Férricos/farmacologia , Compostos Férricos/toxicidade , Compostos Ferrosos/química , Compostos Ferrosos/uso terapêutico , Humanos , Infusões Intravenosas , Injeções , Ferro , Cinética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Maltose/química , Maltose/farmacologia , Maltose/uso terapêutico , Maltose/toxicidade , Camundongos , Mutagênicos/farmacologia , Segurança , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Termodinâmica
17.
Arzneimittelforschung ; 57(6A): 360-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17691585

RESUMO

Under physiological conditions, ferric ions are essentially insoluble because of the formation of polynuclear hydroxo-bridged complexes. Ferrous ions are more soluble but may produce hydroxyl radicals on reaction with hydrogen peroxide. Chelation of ferric and ferrous ions with organic ligands may prevent these undesirable reactions. Alternatively, iron(III)-hydroxide/oxide can be stabilized and solubilized by tight interactions with carbohydrates. The data presented in this work show that, because of its physicochemical properties, the iron(III)-hydroxide polymaltose complex (IPC, Maltofer) does not interact with the active ingredients of commonly used drugs such as acetylsalicylic acid (CAS 50-78-2), tetracycline hydrochloride (CAS 64-75-5), calcium hydrogen-phosphate (CAS 7757-93-9), methyl-L-dopa sesquihydrate (CAS 41372-08-1), and magnesium-L-aspartate hydrochloride (CAS 28184-71-6). In contrast, as confirmed by calculations using thermodynamic parameters, FeCl3 x 6H2O (CAS 10025-77-1) can form different types of complexes with these substances. Moreover, the data show that under aerobic conditions high concentrations of ascorbic acid (CAS 50-81-7) can lead to mobilization of iron from IPC and, thus, support the observation that orange juice slightly increases the uptake of iron from IPC.


Assuntos
Compostos Férricos/química , Acetaminofen/química , Anaerobiose , Ácido Ascórbico/química , Ácido Aspártico/química , Bebidas , Fosfatos de Cálcio/química , Citrus sinensis , Interações Medicamentosas , Interações Alimento-Droga , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Metildopa/química , Ácido Salicílico/química , Espectrofotometria Ultravioleta , Tetraciclina/química
18.
Arzneimittelforschung ; 57(6A): 370-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17691586

RESUMO

Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.


Assuntos
Compostos Férricos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Compostos Férricos/farmacocinética , Hemoglobinas/química , Ferro/sangue , Deficiências de Ferro , Radioisótopos de Ferro , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...