Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335666

RESUMO

Antimicrobial multidrug resistance (MDR) is a global challenge, not only for public health, but also for sustainable agriculture. Antibiotics used in humans should be ruled out for use in veterinary or agricultural settings. Applying antimicrobial peptide (AMP) molecules, produced by soil-born organisms for protecting (soil-born) plants, seems a preferable alternative. The natural role of peptide-antimicrobials, produced by the prokaryotic partner of entomopathogenic-nematode/bacterium (EPN/EPB) symbiotic associations, is to sustain monoxenic conditions for the EPB in the gut of the semi-anabiotic infective dauer juvenile (IJ) EPN. They keep pathobiome conditions balanced for the EPN/EPB complex in polyxenic (soil, vanquished insect cadaver) niches. Xenorhabdus szentirmaii DSM16338(T) (EMC), and X. budapestensis DSM16342(T) (EMA), are the respective natural symbionts of EPN species Steinernema rarum and S. bicornutum. We identified and characterized both of these 15 years ago. The functional annotation of the draft genome of EMC revealed 71 genes encoding non-ribosomal peptide synthases, and polyketide synthases. The large spatial Xenorhabdus AMP (fabclavine), was discovered in EMA, and its biosynthetic pathway in EMC. The AMPs produced by EMA and EMC are promising candidates for controlling MDR prokaryotic and eukaryotic pathogens (bacteria, oomycetes, fungi, protozoa). EMC releases large quantity of iodinin (1,6-dihydroxyphenazine 5,10-dioxide) in a water-soluble form into the media, where it condenses to form spectacular water-insoluble, macroscopic crystals. This review evaluates the scientific impact of international research on EMA and EMC.

2.
J Nat Prod ; 69(12): 1830-2, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17190473

RESUMO

Xenofuranones A (1) and B (2) have been isolated from cultures of the insect-pathogenic bacterium Xenorhabdus szentirmaii, and their structures were elucidated by NMR and mass spectroscopy. Both compounds show similarities to fungal furanones, and their biosynthesis was studied using a reversed approach by feeding putative 12C precursors to an overall 13C background in small-scale experiments followed by gas chromatographic analysis coupled to mass spectrometry.


Assuntos
Furanos/isolamento & purificação , Ácidos Fenilpirúvicos/isolamento & purificação , Xenorhabdus/química , Animais , Comportamento Alimentar/efeitos dos fármacos , Furanos/química , Furanos/farmacologia , Insetos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/farmacologia , Xenorhabdus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA