Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(5): 1142-1150, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38655884

RESUMO

The ARID1A and ARID1B subunits are mutually exclusive components of the BAF variant of SWI/SNF chromatin remodeling complexes. Loss of function mutations in ARID1A are frequently observed in various cancers, resulting in a dependency on the paralog ARID1B for cancer cell proliferation. However, ARID1B has never been targeted directly, and the high degree of sequence similarity to ARID1A poses a challenge for the development of selective binders. In this study, we used mRNA display to identify peptidic ligands that bind with nanomolar affinities to ARID1B and showed high selectivity over ARID1A. Using orthogonal biochemical, biophysical, and chemical biology tools, we demonstrate that the peptides engage two different binding pockets, one of which directly involves an ARID1B-exclusive cysteine that could allow covalent targeting by small molecules. Our findings impart the first evidence of the ligandability of ARID1B, provide valuable tools for drug discovery, and suggest opportunities for the development of selective molecules to exploit the synthetic lethal relationship between ARID1A and ARID1B in cancer.


Assuntos
Proteínas de Ligação a DNA , Peptídeos , RNA Mensageiro , Fatores de Transcrição , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligação Proteica , Sítios de Ligação
2.
Cardiovasc Res ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252884

RESUMO

AIMS: Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS: Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in WT but not adiponectin knockout mice attenuated myocardial ischemia-reperfusion injury. CONCLUSIONS: Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.

3.
Biomed Pharmacother ; 161: 114449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857911

RESUMO

The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.


Assuntos
Fosfatos de Inositol , Itraconazol , Itraconazol/farmacologia , Fosfatos de Inositol/metabolismo , Adesões Focais , Difosfatos/metabolismo , Movimento Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fosforilação , Células Endoteliais/metabolismo , Adesão Celular
4.
Curr Opin Chem Biol ; 70: 102177, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780751

RESUMO

Inositol pyrophosphates (PP-InsPs) constitute a group of highly charged messengers, which regulate central biological processes in health and disease, such as cellular phosphate and general energy homeostasis. Deciphering the molecular mechanisms underlying PP-InsP-mediated signaling remains a challenge due to the unique properties of these molecules, the different modes of action they can access, and a somewhat limited chemical and analytical toolset. Herein, we summarize the most recent mechanistic insights into PP-InsP signaling, which illustrate our progress in connecting mechanism and function of PP-InsPs.


Assuntos
Fenômenos Biológicos , Difosfatos , Fosfatos de Inositol/fisiologia , Fosfatos , Transdução de Sinais/fisiologia
5.
Structure ; 30(2): 263-277.e5, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34678158

RESUMO

Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.


Assuntos
Arrestina/química , Arrestina/metabolismo , Fosfatos de Inositol/metabolismo , Rodopsina/metabolismo , Animais , Bovinos , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Análise de Sequência de RNA , Análise de Célula Única
6.
Biochemistry ; 60(37): 2739-2748, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34499474

RESUMO

Inositol pyrophosphates (PP-InsPs) are highly phosphorylated molecules that have emerged as central nutrient messengers in eukaryotic organisms. They can bind to structurally diverse target proteins to regulate biological functions, such as protein-protein interactions. PP-InsPs are strongly negatively charged and interact with highly basic surface patches in proteins, making their quantitative biochemical analysis challenging. Here, we present the synthesis of biotinylated myo-inositol hexakisphosphates and their application in surface plasmon resonance and grating-coupled interferometry assays, to enable the rapid identification, validation, and kinetic characterization of InsP- and PP-InsP-protein interactions.


Assuntos
Fosfatos de Inositol/química , Ácido Fítico/química , Mapeamento de Interação de Proteínas/métodos , Técnicas Biossensoriais , Biotina/química , Biotinilação/métodos , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Transdução de Sinais/fisiologia
7.
Chem Sci ; 12(32): 10696-10702, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476054

RESUMO

Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are densely phosphorylated eukaryotic messengers, which are involved in numerous cellular processes. To elucidate their signaling functions at the molecular level, non-hydrolyzable bisphosphonate analogs of inositol pyrophosphates, PCP-InsPs, have been instrumental. Here, an efficient synthetic strategy to obtain these analogs in unprecedented quantities is described - relying on the use of combined phosphate ester-phosphoramidite reagents. The PCP-analogs, alongside their natural counterparts, were applied to investigate their regulatory effect on insulin-degrading enzyme (IDE), using a range of biochemical, biophysical and computational methods. A unique interplay between IDE, its substrates and the PP-InsPs was uncovered, in which the PP-InsPs differentially modulated the activity of the enzyme towards short peptide substrates. Aided by molecular docking and molecular dynamics simulations, a flexible binding mode for the InsPs/PP-InsPs was identified at the anion binding site of IDE. Targeting IDE for therapeutic purposes should thus take regulation by endogenous PP-InsP metabolites into account.

8.
STAR Protoc ; 2(1): 100277, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490990

RESUMO

This protocol describes an affinity enrichment approach from mammalian cell extracts to identify protein binding partners of inositol hexakisphosphate (InsP6) and 5-diphosphoinositol pentakisphosphate (5PP-InsP5), two important eukaryotic metabolites. The interactomes are annotated using mass spectrometry-based proteomics, and comparison against a control resin can uncover hundreds of protein targets. Quantitative analysis of InsP6- versus 5PP-InsP5-binding proteins highlights specific protein-ligand interactions. The approach is applicable to different cells and organisms and will contribute to a mechanistic understanding of inositol poly- and pyrophosphate signaling. For complete details on the use and execution of this protocol, please refer to Furkert et al. (2020).


Assuntos
Fosfatos de Inositol/metabolismo , Espectrometria de Massas , Ácido Fítico/metabolismo , Sistemas do Segundo Mensageiro , Células HCT116 , Células HEK293 , Humanos
9.
mBio ; 11(5)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082258

RESUMO

In the human-pathogenic fungus Cryptococcus neoformans, the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP7 (isomer 5-PP-IP5) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP7 synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP7 in PHO pathway regulation by demonstrating that IP7 functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP7-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following PHO81 gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP7 isomers have evolved different roles in PHO pathway control in C. neoformans and nonpathogenic yeast.IMPORTANCE Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Cryptococcus neoformans Here, we demonstrate that interaction of the inositol pyrophosphate, IP7, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP7-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP7-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.


Assuntos
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Fosfatos de Inositol/metabolismo , Pirofosfatases/metabolismo , Transdução de Sinais/genética , Animais , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas Repressoras/genética , Virulência/genética
10.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115740

RESUMO

Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.

11.
Cell Chem Biol ; 27(8): 1097-1108.e4, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32783964

RESUMO

The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.


Assuntos
Marcadores de Afinidade/química , GTP Fosfo-Hidrolases/metabolismo , Fosfatos de Inositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Cromatografia Líquida de Alta Pressão , GTP Fosfo-Hidrolases/química , Células HCT116 , Células HEK293 , Humanos , Fosfatos de Inositol/química , Monoéster Fosfórico Hidrolases/química , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/química , Proteoma/análise , Transdução de Sinais , Espectrometria de Massas em Tandem
12.
Angew Chem Int Ed Engl ; 56(10): 2790-2794, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28156033

RESUMO

Real-time monitoring of acid sphingomyelinase (ASM) activity is crucial for investigating its role in lipid-mediated signaling processes. In this study, we synthesized fluorescent phosphosphingolipids capable of FRET by phosphorodichloridate chemistry. These sphingomyelin analogues are substrates for recombinant human ASM and can be used to monitor ASM activity by fluorescence spectroscopy. Incubation with cell lysates from wild-type and knock-out mice further confirmed probe cleavage to be exclusive to ASM. We also systematically exploited the environmental sensitivity of the fluorophores to achieve significant increases in responsiveness. This concept may be transferred to other lipid probes in the future. The ASM activity in live cells was imaged by two-photon-excitation microscopy.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Lipídeos/química , Esfingomielina Fosfodiesterase/análise , Água/química , Animais , Sobrevivência Celular , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Camundongos , Camundongos Knockout , Estrutura Molecular , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Esfingomielina Fosfodiesterase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...