Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730673

RESUMO

Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to the right patient populations. We built patient drug response models by integrating patient tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks to infer relationships between patient gene expression and drug response. Through these discovery pipelines, we identified agents of interest for GBM to be effective across five independent patient cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power of integrating computational approaches. In doing so, we quickly nominated several drugs with varying known mechanisms of action that can efficaciously target GBM. By simultaneously identifying biomarkers with these drugs, we also provide tools to select the right patient populations for subsequent evaluation.

2.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712075

RESUMO

Comprehensive analysis of chromatin architecture is crucial for understanding the gene regulatory programs during development and in disease pathogenesis, yet current methods often inadequately address the unique challenges presented by analysis of heterogeneous tissue samples. Here, we introduce Droplet Hi-C, which employs a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture at single-cell resolution from the mouse cortex and analyzed gene regulatory programs in major cortical cell types. Additionally, we used this technique to detect copy number variation (CNV), structural variations (SVs) and extrachromosomal DNA (ecDNA) in cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We further refined this technique to allow for joint profiling of chromatin architecture and transcriptome in single cells, facilitating a more comprehensive exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C not only addresses critical gaps in chromatin analysis of heterogeneous tissues but also emerges as a versatile tool enhancing our understanding of gene regulation in health and disease.

3.
J Clin Invest ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662454

RESUMO

Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single cell RNA-sequencing, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validation of two isoform switching events in CERS5 and MPZL1 shows regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in impacting glioma malignance and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.

4.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353122

RESUMO

Nervous system tumors, particularly brain tumors, represent the most common tumors in children and one of the most lethal tumors in adults. Despite decades of research, there are few effective therapies for these cancers. Although human nervous system tumor cells and genetically engineered mouse models have served as excellent platforms for drug discovery and preclinical testing, they have limitations with respect to accurately recapitulating important aspects of the pathobiology of spontaneously arising human tumors. For this reason, attention has turned to the deployment of human stem cell engineering involving human embryonic or induced pluripotent stem cells, in which genetic alterations associated with nervous system cancers can be introduced. These stem cells can be used to create self-assembling three-dimensional cerebral organoids that preserve key features of the developing human brain. Moreover, stem cell-engineered lines are amenable to xenotransplantation into mice as a platform to investigate the tumor cell of origin, discover cancer evolutionary trajectories and identify therapeutic vulnerabilities. In this article, we review the current state of human stem cell models of nervous system tumors, discuss their advantages and disadvantages, and provide consensus recommendations for future research.


Assuntos
Neoplasias Encefálicas , Células-Tronco Pluripotentes Induzidas , Criança , Humanos , Animais , Camundongos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Mutação
5.
Redox Biol ; 69: 102976, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052106

RESUMO

Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias de Mama Triplo Negativas , Humanos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Transdução de Sinais
6.
Sci Rep ; 13(1): 22412, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104152

RESUMO

In silico interrogation of glioblastoma (GBM) in The Cancer Genome Atlas (TCGA) revealed upregulation of GNA12 (Gα12), encoding the alpha subunit of the heterotrimeric G-protein G12, concomitant with overexpression of multiple G-protein coupled receptors (GPCRs) that signal through Gα12. Glioma stem cell lines from patient-derived xenografts also showed elevated levels of Gα12. Knockdown (KD) of Gα12 was carried out in two different human GBM stem cell (GSC) lines. Tumors generated in vivo by orthotopic injection of Gα12KD GSC cells showed reduced invasiveness, without apparent changes in tumor size or survival relative to control GSC tumor-bearing mice. Transcriptional profiling of GSC-23 cell tumors revealed significant differences between WT and Gα12KD tumors including reduced expression of genes associated with the extracellular matrix, as well as decreased expression of stem cell genes and increased expression of several proneural genes. Thrombospondin-1 (THBS1), one of the genes most repressed by Gα12 knockdown, was shown to be required for Gα12-mediated cell migration in vitro and for in vivo tumor invasion. Chemogenetic activation of GSC-23 cells harboring a Gα12-coupled DREADD also increased THBS1 expression and in vitro invasion. Collectively, our findings implicate Gα12 signaling in regulation of transcriptional reprogramming that promotes invasiveness, highlighting this as a potential signaling node for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Transdução de Sinais , Processos Neoplásicos , Regulação para Cima , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células
7.
Neurooncol Adv ; 5(1): vdad147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024245

RESUMO

Background: Infiltration is a life-threatening growth pattern in malignant astrocytomas and a significant cause of therapy resistance. It results in the tumor cell spreading deeply into the surrounding brain tissue, fostering tumor recurrence and making complete surgical resection impossible. We need to thoroughly understand the mechanisms underlying diffuse infiltration to develop effective therapies. Methods: We integrated in vitro and in vivo functional assays, RNA sequencing, clinical, and expression information from public data sets to investigate the role of ADAM23 expression coupling astrocytoma's growth and motility. Results: ADAM23 downregulation resulted in increased infiltration, reduced tumor growth, and improved overall survival in astrocytomas. Additionally, we show that ADAM23 deficiency induces γ-secretase (GS) complex activity, contributing to the production and deposition of the Amyloid-ß and release of NICD. Finally, GS ablation in ADAM23-low astrocytomas induced a significant inhibitory effect on the invasive programs. Conclusions: Our findings reveal a role for ADAM23 in regulating the balance between cell proliferation and invasiveness in astrocytoma cells, proposing GS inhibition as a therapeutic option in ADAM23 low-expressing astrocytomas.

8.
Neurooncol Adv ; 5(1): vdad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706203

RESUMO

Background: Deletions or loss-of-function mutations in phosphatase and tensin homolog (PTEN) are common in glioblastoma (GBM) and have been associated with defective DNA damage repair. Here we investigated whether PTEN deficiency presents a vulnerability to a simultaneous induction of DNA damage and suppression of repair mechanisms by combining topoisomerase I (TOP1) and PARP inhibitors. Methods: Patient-derived GBM cells and isogenic PTEN-null and PTEN-WT glioma cells were treated with LMP400 (Indotecan), a novel non-camptothecin TOP1 inhibitor alone and in combination with a PARP inhibitor, Olaparib or Niraparib. RNAseq analysis was performed to identify treatment-induced dysregulated pathways. Results: We found that GBM cells lacking PTEN expression are highly sensitive to LMP400; however, rescue of the PTEN expression reduces sensitivity to the treatment. Combining LMP400 with Niraparib leads to synergistic cytotoxicity by inducing G2/M arrest, DNA damage, suppression of homologous recombination-related proteins, and activation of caspase 3/7 activity significantly more in PTEN-null cells compared to PTEN-WT cells. LMP400 and Niraparib are not affected by ABCB1 and ABCG2, the major ATP-Binding Cassette (ABC) drug efflux transporters expressed at the blood-brain barrier (BBB), thus suggesting BBB penetration which is a prerequisite for potential brain tumor treatment. Animal studies confirmed both an anti-glioma effect and sufficient BBB penetration to prolong survival of mice treated with the drug combination. Conclusions: Our findings provide a proof of concept for the combined treatment with LMP400 and Niraparib in a subset of GBM patients with PTEN deficiency.

9.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461511

RESUMO

Glioblastoma (GBM) represents the most aggressive subtype of glioma, noted for its profound invasiveness and molecular heterogeneity. The mesenchymal (MES) transcriptomic subtype is frequently associated with therapy resistance, rapid recurrence, and increased tumor-associated macrophages. Notably, activation of the NF-κB pathway and alterations in the PTEN gene are both associated with this malignant transition. Although PTEN aberrations have been shown to be associated with enhanced NF-κB signaling, the relationships between PTEN, NF-κB and MES transition are poorly understood in GBM. Here, we show that PTEN regulates the chromatin binding of bromodomain and extraterminal (BET) family proteins, BRD2 and BRD4, mediated by p65/RelA localization to the chromatin. By utilizing patient-derived glioblastoma stem cells and CRISPR gene editing of the RELA gene, we demonstrate a crucial role for RelA lysine 310 acetylation in recruiting BET proteins to chromatin for MES gene expression and GBM cell invasion upon PTEN loss. Remarkably, we found that BRD2 is dependent on chromatin associated acetylated RelA for its recruitment to MES gene promoters and their expression. Furthermore, loss of BRD2 results in the loss of MES signature, accompanied by an enrichment of proneural signature and enhanced therapy responsiveness. Finally, we demonstrate that disrupting the NFκB/BRD2 interaction with a brain penetrant BET-BD2 inhibitor reduces mesenchymal gene expression, GBM invasion, and therapy resistance in GBM models. This study uncovers the role of hitherto unexplored PTEN-NF-κB-BRD2 pathway in promoting MES transition and suggests inhibiting this complex with BET-BD2 specific inhibitors as a therapeutic approach to target the MES phenotype in GBM.

10.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343523

RESUMO

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Glioma/patologia , Haploinsuficiência/genética , Mutação/genética , Inibidor de NF-kappaB alfa/genética , Isocitrato Desidrogenase
11.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169593

RESUMO

The epidermal growth factor receptor (EGFR) has been studied extensively because of its critical role in cellular signaling and association with disease. Previous models have elucidated interactions between EGFR and downstream adaptor proteins or showed phenotypes affected by EGFR. However, the link between specific EGFR phosphorylation sites and phenotypic outcomes is still poorly understood. Here, we employed a suite of isogenic cell lines expressing site-specific mutations at each of the EGFR C-terminal phosphorylation sites to interrogate their role in the signaling network and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR C-terminal tail, while also revealing nodes in the network that have not previously been linked to EGFR signaling. Our data-driven model highlights the signaling network nodes associated with distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. Application of this same approach to less-studied RTKs should provide a plethora of novel associations that should lead to an improved understanding of these signaling networks.


Assuntos
Fator de Crescimento Epidérmico , Tirosina , Tirosina/genética , Tirosina/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Transdução de Sinais/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fosforilação
12.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865329

RESUMO

Diffuse midline glioma (DMG) is a leading cause of brain tumor death in children. In addition to hallmark H3.3K27M mutations, significant subsets also harbor alterations of other genes, such as TP53 and PDGFRA. Despite the prevalence of H3.3K27M, the results of clinical trials in DMG have been mixed, possibly due to the lack of models recapitulating its genetic heterogeneity. To address this gap, we developed human iPSC-derived tumor models harboring TP53R248Q with or without heterozygous H3.3K27M and/or PDGFRAD842V overexpression. The combination of H3.3K27M and PDGFRAD842V resulted in more proliferative tumors when gene-edited neural progenitor (NP) cells were implanted into mouse brains compared to NP with either mutation alone. Transcriptomic comparison of tumors and their NP cells of origin identified conserved JAK/STAT pathway activation across genotypes as characteristic of malignant transformation. Conversely, integrated genome-wide epigenomic and transcriptomic analyses, as well as rational pharmacologic inhibition, revealed targetable vulnerabilities unique to the TP53R248Q; H3.3K27M; PDGFRAD842V tumors and related to their aggressive growth phenotype. These include AREG-mediated cell cycle control, altered metabolism, and vulnerability to combination ONC201/trametinib treatment. Taken together, these data suggest that cooperation between H3.3K27M and PDGFRA influences tumor biology, underscoring the need for better molecular stratification in DMG clinical trials.

14.
Cell Death Differ ; 30(2): 417-428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460775

RESUMO

Caspase-8 is a cysteine protease that plays an essential role in apoptosis. Consistently with its canonical proapoptotic function, cancer cells may genetically or epigenetically downregulate its expression. Unexpectedly, Caspase-8 is often retained in cancer, suggesting the presence of alternative mechanisms that may be exploited by cancer cells to their own benefit. In this regard, we reported that Src tyrosine kinase, which is aberrantly activated in many tumors, promotes Caspase-8 phosphorylation on Tyrosine 380 (Y380) preventing its full activation. Here, we investigated the significance of Caspase-8 expression and of its phosphorylation on Y380 in glioblastoma, a brain tumor where both Caspase-8 expression and Src activity are often aberrantly upregulated. Transcriptomic analyses identified inflammatory response as a major target of Caspase-8, and in particular, NFκB signaling as one of the most affected pathways. More importantly, we could show that Src-dependent phosphorylation of Caspase-8 on Y380 drives the assembly of a multiprotein complex that triggers NFκB activation, thereby inducing the expression of inflammatory and pro-angiogenic factors. Remarkably, phosphorylation on Y380 sustains neoangiogenesis and resistance to radiotherapy. In summary, our work identifies a novel interplay between Src kinase and Caspase-8 that allows cancer cells to hijack Caspase-8 to sustain tumor growth.


Assuntos
Caspase 8 , Glioblastoma , Quinases da Família src , Humanos , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Glioblastoma/genética , Fosforilação , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
15.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168210

RESUMO

Oncogene amplification is a major driver of cancer pathogenesis. Breakage fusion bridge (BFB) cycles, like extrachromosomal DNA (ecDNA), can lead to high copy numbers of oncogenes, but their impact on intratumoral heterogeneity, treatment response, and patient survival are not well understood due to difficulty in detecting them by DNA sequencing. We describe a novel algorithm that detects and reconstructs BFB amplifications using optical genome maps (OGMs), called OM2BFB. OM2BFB showed high precision (>93%) and recall (92%) in detecting BFB amplifications in cancer cell lines, PDX models and primary tumors. OM-based comparisons demonstrated that short-read BFB detection using our AmpliconSuite (AS) toolkit also achieved high precision, albeit with reduced sensitivity. We detected 371 BFB events using whole genome sequences from 2,557 primary tumors and cancer lines. BFB amplifications were preferentially found in cervical, head and neck, lung, and esophageal cancers, but rarely in brain cancers. BFB amplified genes show lower variance of gene expression, with fewer options for regulatory rewiring relative to ecDNA amplified genes. BFB positive (BFB (+)) tumors showed reduced heterogeneity of amplicon structures, and delayed onset of resistance, relative to ecDNA(+) tumors. EcDNA and BFB amplifications represent contrasting mechanisms to increase the copy numbers of oncogene with markedly different characteristics that suggest different routes for intervention.

16.
Neuro Oncol ; 24(12): 2035-2062, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125064

RESUMO

The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Glioblastoma , Neoplasias Pulmonares , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Medicina de Precisão
17.
Brain ; 145(10): 3608-3621, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35603900

RESUMO

The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focused on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.


Assuntos
PTEN Fosfo-Hidrolase , Treonina , Animais , Camundongos , Masculino , Treonina/metabolismo , Tensinas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neurônios/metabolismo , Alanina/metabolismo , Lipídeos
18.
Neuro Oncol ; 24(12): 2063-2075, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325218

RESUMO

BACKGROUND: Heterozygous TERT (telomerase reverse transcriptase) promoter mutations (TPMs) facilitate TERT expression and are the most frequent mutation in glioblastoma (GBM). A recent analysis revealed this mutation is one of the earliest events in gliomagenesis. However, no appropriate human models have been engineered to study the role of this mutation in the initiation of these tumors. METHOD: We established GBM models by introducing the heterozygous TPM in human induced pluripotent stem cells (hiPSCs) using a two-step targeting approach in the context of GBM genetic alterations, CDKN2A/B and PTEN deletion, and EGFRvIII overexpression. The impact of the mutation was evaluated through the in vivo passage and in vitro experiment and analysis. RESULTS: Orthotopic injection of neuronal precursor cells (NPCs) derived from hiPSCs with the TPM into immunodeficient mice did not enhance tumorigenesis compared to TERT promoter wild type NPCs at initial in vivo passage presumably due to relatively long telomeres. However, the mutation recruited GA-Binding Protein and engendered low-level TERT expression resulting in enhanced tumorigenesis and maintenance of short telomeres upon secondary passage as observed in human GBM. These results provide the first insights regarding increased tumorigenesis upon introducing a TPM compared to isogenic controls without TPMs. CONCLUSION: Our novel GBM models presented the growth advantage of heterozygous TPMs for the first time in the context of GBM driver mutations relative to isogenic controls, thereby allowing for the identification and validation of TERT promoter-specific vulnerabilities in a genetically accurate background.


Assuntos
Glioblastoma , Células-Tronco Pluripotentes Induzidas , Telomerase , Humanos , Camundongos , Animais , Encurtamento do Telômero/genética , Telomerase/genética , Telômero/genética , Glioblastoma/genética , Mutação , Carcinogênese
19.
Neuro Oncol ; 24(11): 1857-1868, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35305088

RESUMO

BACKGROUND: Neddylation inhibition, affecting posttranslational protein function and turnover, is a promising therapeutic approach to cancer. We report vulnerability to MLN4924 or pevonedistat (a neddylation inhibitor) in a subset of glioblastoma (GBM) preclinical models and identify biomarkers, mechanisms, and signatures of differential response. METHODS: GBM sequencing data were queried for genes associated with MLN4924 response status; candidates were validated by molecular techniques. Time-course transcriptomics and proteomics revealed processes implicated in MLN4924 response. RESULTS: Vulnerability to MLN4924 is associated with elevated S-phase populations, re-replication, and DNA damage. Transcriptomics and shotgun proteomics depict PTEN signaling, DNA replication, and chromatin instability pathways as significant differentiators between sensitive and resistant models. Loss of PTEN and its nuclear functions is associated with resistance to MLN4924. Time-course proteomics identified elevated TOP2A in resistant models through treatment. TOP2A inhibitors combined with MLN4924 prove synergistic. CONCLUSIONS: We show that PTEN status serves as both a novel biomarker for MLN4924 response in GBM and reveals a vulnerability to TOP2A inhibitors in combination with MLN4924.


Assuntos
Glioblastoma , PTEN Fosfo-Hidrolase , Inibidores da Topoisomerase II , Humanos , Apoptose , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Glioblastoma/tratamento farmacológico , Proteína NEDD8/metabolismo , PTEN Fosfo-Hidrolase/genética , Pirimidinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
20.
Cell Rep ; 37(5): 109957, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731610

RESUMO

The highly lethal brain cancer glioblastoma (GBM) poses a daunting challenge because the blood-brain barrier renders potentially druggable amplified or mutated oncoproteins relatively inaccessible. Here, we identify sphingomyelin phosphodiesterase 1 (SMPD1), an enzyme that regulates the conversion of sphingomyelin to ceramide, as an actionable drug target in GBM. We show that the highly brain-penetrant antidepressant fluoxetine potently inhibits SMPD1 activity, killing GBMs, through inhibition of epidermal growth factor receptor (EGFR) signaling and via activation of lysosomal stress. Combining fluoxetine with temozolomide, a standard of care for GBM, causes massive increases in GBM cell death and complete tumor regression in mice. Incorporation of real-world evidence from electronic medical records from insurance databases reveals significantly increased survival in GBM patients treated with fluoxetine, which was not seen in patients treated with other selective serotonin reuptake inhibitor (SSRI) antidepressants. These results nominate the repurposing of fluoxetine as a potentially safe and promising therapy for patients with GBM and suggest prospective randomized clinical trials.


Assuntos
Antineoplásicos/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Reposicionamento de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Fluoxetina/farmacologia , Glioblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Registros Eletrônicos de Saúde , Receptores ErbB/metabolismo , Feminino , Fluoxetina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos Nus , Permeabilidade , Estudos Retrospectivos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Temozolomida/farmacologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...