Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(2): 201-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622090

RESUMO

Visomitin eye drops are the first and, so far, the only drug based on SkQ1 - the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium, developed in the laboratories of Moscow State University under the leadership of Academician V. P. Skulachev. SkQ1 is considered as a potential tool to combat the aging program. We have previously shown that it is able to prevent and/or suppress development of all manifestations of accelerated senescence in OXYS rats, including retinopathy, similar to the age-related macular degeneration (AMD). Here, we assessed the effect of Visomitin instillations on progression of the AMD-like pathology and p38 MAPK and ERK1/2 activity in the OXYS rat retina (from the age of 9 to 12 months). Wistar and OXYS rats treated with placebo (composition identical to Visomitin with the exception of SkQ1) were used as controls. Ophthalmological examination showed that in the OXYS rats receiving placebo, retinopathy progressed and severity of clinical manifestations did not differ from the intact OXYS rats. Visomitin suppressed progression of the AMD-like pathology in the OXYS rats and significantly improved structural and functional parameters of the retinal pigment epithelium cells and state of microcirculation in the choroid, which, presumably, contributed to preservation of photoreceptors, associative and ganglion neurons. It was found that the activity of p38 MAPK and ERK1/2 in the retina of 12-month-old OXYS rats is higher than that of the Wistar rats of the same age, as indicated by the increased content of phosphorylated forms of p38 MAPK and ERK1/2 and their target protein tau (at position T181 and S396). Visomitin decreased phosphorylation of p38 MAPK, ERK1/2, and tau indicating suppression of activity of these MAPK signaling cascades. Thus, Visomitin eye drops are able to suppress progression of the AMD-like pathology in the OXYS rats and their effect is associated with the decrease in activity of the MAPK signaling cascades.


Assuntos
Compostos de Benzalcônio , Sistema de Sinalização das MAP Quinases , Degeneração Macular , Metilcelulose , Plastoquinona , Humanos , Ratos , Animais , Lactente , Ratos Wistar , Soluções Oftálmicas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Envelhecimento/metabolismo , Transdução de Sinais , Combinação de Medicamentos
2.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002079

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of late-onset blindness in elderly. The occurrence and development of AMD is a multifactorial complex process where autophagy plays an important role. The first-line drugs for neovascular AMD (nAMD) are inhibitors of VEGF, with up to 30% of patients having an incomplete response to treatment. Genetic factors may influence the response to anti-VEGF therapy and explain treatment outcome variability. We aimed to estimate the role of polymorphic markers of the MTOR (rs1064261, rs1057079, rs11121704, rs2295080), SQSTM1 (rs10277), ULK1 (rs11246867, rs3088051), MAP1LC3A (rs73105013) and ATG5 (rs573775) genes in the development of nAMD and the efficacy of anti-VEGF therapy response. METHODS: Genotyping by allele-specific PCR was performed in 317 controls and 315 nAMD patients in the Russian population. Of them, 196 treatment-naive nAMD patients underwent three monthly intravitreal injections (IVIs) of aflibercept. Genotypic frequencies were compared with OCT markers of therapy effectiveness and best-corrected visual acuity (BCVA) measures. The main outcomes were the BCVA gain and decrease in central retinal thickness (CRT). RESULTS: MTOR-rs1057079-C, MTOR-rs11121704-C and MTOR-rs2295080-G alleles were associated with an increased risk of nAMD. The BCVA was increased in 117 (59.7%) patients by 10 [5-20] letters, did not changed in 59 (30.1%), and was decreased in 20 (10.2%) patients. ULK1-rs3088051 was associated with BCVA change. Among patients with the TT and CT genotypes for ULK1-rs3088051, an improvement in visual acuity was noted in 67.6% and 53.8% of cases, while in patients with the CC genotype, an increase in BCVA was recorded in 37.5% of cases (p = 0.01). The decrease in CRT was associated with SQSTM1-rs10277 (p = 0.001): it was significantly higher in TT (93 [58-122] mkm) and CT (66 [30-105] mkm) carriers compared to the CC genotype (47 [24-68] mkm). Other SNPs did not show significant associations with the outcome of anti-VEGF treatment. CONCLUSIONS: MTOR gene polymorphisms are moderately associated with the risk of nAMD. SQSTM1-rs10277 and ULK1-rs3088051 may influence short-term response to intravitreal anti-VEGF treatment. The results suggest that autophagy could be a target for future drugs to overcome resistance to anti-VEGF therapy.

3.
Biomedicines ; 10(7)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35884963

RESUMO

Neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. The gold standard of nAMD treatment is intravitreal injections of vascular endothelial growth factor (VEGF) inhibitors. Genetic factors may influence the response to anti-VEGF therapy and result in a high degree of response variability. The aim of the study was to evaluate the association of the polymorphisms in genes related to the complement system (rs2285714-CFI, rs10490924-ARMS2, rs2230199-C3, rs800292-CFH, and rs6677604-CFH) with nAMD its clinical features and optical coherent tomography (OCT) biomarkers of treatment response to anti-VEGF therapy. Genotyping by allele-specific PCR was performed in 193 AMD patients and 147 age-matched controls. A prospective study of the dynamics of changes in OCT biomarkers during aflibercept treatment included 110 treatment-naive patients. Allele T rs10490924 was associated with the increased risk of nAMD. For both rs800292 and rs6677604, carriage of the A allele was protective and decreased the nAMD risk. Associations of rs2230199 with central retinal thickness (CRT) and intraretinal cysts were revealed. The height of pigment epithelium detachment and the height of neuroretinal detachment were significantly higher in carriers of the minor allele of rs2285714, both at baseline and during treatment. The reduction of CRT was associated with higher CRT at baseline and the presence of the T allele of rs2285714. By the end of one-year follow-up the patients homozygous for the minor allele rs2285714 had significantly higher odds of the presence of anastomoses and loops and active neovascular membrane. Furthermore, minor allele carriers had decreased levels of complement factor I level in aqueous humor but not in the plasma, which may be due to the influence of rs2285714 on tissue-specific splicing. Our results suggest that the severity of AMD macular lesions is associated with rs2285714 and rs2230199 polymorphisms, which could be explained by their high regulatory potential. Patients with the minor allele of rs2285714 respond worse to antiangiogenic therapy.

4.
Biochemistry (Mosc) ; 87(12): 1552-1562, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717446

RESUMO

According to the concept suggested by V. P. Skulachev and co-authors, aging of living organisms can be considered as a special case of programmed death of an organism - phenoptosis, and mitochondrial antioxidant SkQ1 is capable of inhibiting both acute and chronic phenoptosis (aging). The authors of the concept associate effects of SkQ1 with suppression of the enhanced generation of ROS in mitochondria. Numerous studies have confirmed the ability of SkQ1 to inhibit manifestations of the "healthy", or physiological, aging. According to the results of our studies, SkQ1 is especially effective in suppressing the program of genetically determined accelerated senescence in OXYS rats, which appears as an early development of a complex of age-related diseases: cataracts, retinopathy (similar to the age-related macular degeneration in humans), osteoporosis, and signs of Alzheimer's disease. Accelerated senescence in OXYS rats is associated with mitochondrial dysfunction, but no direct associations with oxidative stress have been identified. Nevertheless, SkQ1 is able to prevent and/or suppress development of all manifestations of accelerated senescence in OXYS rats. Its effects are due to impact on the activity of many signaling pathways and processes, but first of all they are associated with restoration of the structural and functional parameters of mitochondria. It could be suggested that the use of SkQ1 could represent a promising strategy in prevention of accelerated phenoptosis - early development of a complex of age-related diseases (multimorbidity) in people predisposed to it.


Assuntos
Envelhecimento , Antioxidantes , Animais , Ratos , Envelhecimento/fisiologia , Antioxidantes/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo
5.
Aging (Albany NY) ; 3(1): 44-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21191149

RESUMO

Pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the world, remains poorly understood. This makes it necessary to create animal models for studying AMD pathogenesis and to design new therapeutic approaches. Here we showed that retinopathy in OXYS rats is similar to human AMD according to clinical signs, morphology, and vascular endothelium growth factor (VEGF) and pigment epithelium-derived factor (PEDF) genes expression. Clinical signs of retinopathy OXYS rats manifest by the age 3 months against the background of significantly reduced expression level of VEGF and PEDF genes due to the decline of the amount of retinal pigment epithelium (RPE) cells and alteration of choroidal microcirculation. The disruption in OXYS rats' retina starts at the age of 20 days and appears as reduce the area of RPE cells but does not affect their ultrastructure. Ultrastructural pathological alterations of RPE as well as develop forms of retinopathy are observed in OXYS rats from age 12 months and manifested as excessive accumulation of lipofuscin in RPE regions adjacent to the rod cells, whirling extentions of the basement membrane into the cytoplasm. These data suggest that primary cellular degenerative alterations in the RPE cells secondarily lead to choriocapillaris atrophy and results in complete loss of photoreceptor cells in the OXYS rats' retina by the age of 24 months.


Assuntos
Envelhecimento/fisiologia , Degeneração Macular/patologia , Ratos Endogâmicos , Epitélio Pigmentado da Retina/patologia , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Expressão Gênica , Humanos , Masculino , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Wistar , Retina/patologia , Retina/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Serpinas/genética , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA