Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 15(8): 2235-2249, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35478318

RESUMO

The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml-1 . For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml-1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.


Assuntos
Álcool Desidrogenase , Escherichia coli , Álcool Desidrogenase/metabolismo , Caproatos , Cicloexanóis/metabolismo , Escherichia coli/metabolismo , Lactonas , NADP/metabolismo , Oxirredução , Oxigenases/metabolismo
2.
Microb Biotechnol ; 12(5): 1003-1013, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237428

RESUMO

Inducible promoters such as Plac are of limited usability for industrial protein production with Pseudomonas putida. We therefore utilized cell density-dependent auto-inducible promoters for recombinant gene expression in P. putida KT2440 based on the RoxS/RoxR Quorum Sensing (QS) system of the bacterium. To this end, genetic regions upstream of the RoxS/RoxR-regulated genes ddcA (PR ox132 ) and PP_3332 (PR ox306 ) were inserted into plasmids that mediated the expression of superfolder green fluorescent protein (sfGFP) and surface displayed mCherry, confirming their promoter functionalities. Mutation of the Pribnow box of PR ox306 to the σ70 consensus sequence (PR ox3061 ) resulted in a more than threefold increase of sfGFP production. All three promoters caused cell density-dependent expression, starting transcription at optical densities (OD578 ) of approximately 1.0 (PR ox132 , PR ox306 ) or 0.7 (PR ox3061 ) as determined by RT-qPCR. The QS dependency of PR ox306 was further shown by cultivating P. putida in media that had already been used for cultivation and thus contained bacterial signal molecules. The longer P. putida had grown in these media before, the earlier protein expression in freshly inoculated P. putida appeared with PR ox306 . This confirmed previous findings that a bacterial compound accumulates within the culture and induces protein expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Densidade Demográfica , Regiões Promotoras Genéticas , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/genética , Percepção de Quorum , Proteínas Recombinantes/biossíntese , Genes Reporter , Vetores Genéticos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Plasmídeos , Proteínas Recombinantes/genética , Ativação Transcricional
3.
Enzyme Microb Technol ; 118: 1-5, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30143192

RESUMO

A convenient and most abundantly applied method to determine the growth state of a bacterial cell culture is to determine the optical density (OD) spectrophotometrically. Dilution of the samples, which is necessary to measure within the linear range of the spectrophotometer, is time-consuming and not compatible with high-throughput applications. Here we present a direct approach to estimate the OD at 578 nm (OD578) of bacterial cultures in microplates without the need for sample dilution. This could be advantageous for high-throughput analysis of bacterial cells in microplates for example when optimizing growth conditions, screening for new substrates of a bacterial strain or monitoring enzymatic activity after enzyme evolution. Pseudomonas putida cells were grown in shake flasks. The OD578 was determined in parallel in a microplate directly without dilution and in a spectrophotometer cuvette after dilution. The resulting data set was used to identify a conversion formula, which enables direct and reliable transformation of OD measurements of undiluted samples into the corrected OD values as would have been obtained for diluted samples measured in a standard spectrophotometer. Subsequently we could show that just a few OD calibration points are required to adjust this conversion formula and make it suitable for other suspensions or cultures of bacterial strains different than P. putida. The OD calibration points can be obtained by any combination of microplate reader and cuvette spectrophotometer. For this purpose, conversion formulas for a formazine standard suspension and a suspension of Escherichia coli BL21(DE3) cells were successfully generated. The OD values calculated by both conversion formulas turned out to be identical with the values as obtained by the control measurements in the spectrophotometer. This indicates the general applicability of the conversion formula as described.


Assuntos
Bactérias/crescimento & desenvolvimento , Técnicas Bacteriológicas/métodos , Espectrofotometria Ultravioleta/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA