Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadl5952, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598639

RESUMO

N-methyl-d-aspartate receptors (NMDARs) and other ionotropic glutamate receptors (iGluRs) mediate most of the excitatory signaling in the mammalian brains in response to the neurotransmitter glutamate. Uniquely, NMDARs composed of GluN1 and GluN3 are activated exclusively by glycine, the neurotransmitter conventionally mediating inhibitory signaling when it binds to pentameric glycine receptors. The GluN1-3 NMDARs are vital for regulating neuronal excitability, circuit function, and specific behaviors, yet our understanding of their functional mechanism at the molecular level has remained limited. Here, we present cryo-electron microscopy structures of GluN1-3A NMDARs bound to an antagonist, CNQX, and an agonist, glycine. The structures show a 1-3-1-3 subunit heterotetrameric arrangement and an unprecedented pattern of GluN3A subunit orientation shift between the glycine-bound and CNQX-bound structures. Site-directed disruption of the unique subunit interface in the glycine-bound structure mitigated desensitization. Our study provides a foundation for understanding the distinct structural dynamics of GluN3 that are linked to the unique function of GluN1-3 NMDARs.


Assuntos
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona , Microscopia Crioeletrônica , Glicina/metabolismo , Neurotransmissores , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577549

RESUMO

Behavioral time scale plasticity (BTSP), is a form of non-Hebbian plasticity induced by integrating pre- and postsynaptic components separated by behavioral time scale (seconds). BTSP in the hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms underlying this behavioral time scale (eligibility trace) and synapse specificity are unknown. CaMKII can be activated in a synapse-specific manner and remain active for a few seconds, making it a compelling candidate for the eligibility trace during BTSP. Here, we show that BTSP can be induced in a single dendritic spine using 2-photon glutamate uncaging paired with postsynaptic current injection temporally separated by behavioral time scale. Using an improved CaMKII sensor, we saw no detectable CaMKII activation during this BTSP induction. Instead, we observed a dendritic, delayed, and stochastic CaMKII activation (DDSC) associated with Ca 2+ influx and plateau 20-40 s after BTSP induction. DDSC requires both pre-and postsynaptic activity, suggesting that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 30 s after the BTSP protocol inhibited synaptic potentiation, indicating that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca 2+ release facilitates both DDSC and BTSP. Thus, our study suggests that the non-synapse specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.

3.
Nat Commun ; 14(1): 3821, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380652

RESUMO

Calcium homeostasis modulator 1 (CALHM1) is a voltage-dependent channel involved in neuromodulation and gustatory signaling. Despite recent progress in the structural biology of CALHM1, insights into functional regulation, pore architecture, and channel blockade remain limited. Here we present the cryo-EM structure of human CALHM1, revealing an octameric assembly pattern similar to the non-mammalian CALHM1s and the lipid-binding pocket conserved across species. We demonstrate by MD simulations that this pocket preferentially binds a phospholipid over cholesterol to stabilize its structure and regulate the channel activities. Finally, we show that residues in the amino-terminal helix form the channel pore that ruthenium red binds and blocks.


Assuntos
Fosfolipídeos , Humanos , Rutênio Vermelho , Glicoproteínas de Membrana , Canais de Cálcio
4.
ACS Chem Neurosci ; 14(5): 917-935, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779874

RESUMO

Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.


Assuntos
Analgesia , Morfina , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Roedores/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Dor/metabolismo , Relação Dose-Resposta a Droga
5.
Elife ; 112022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36301074

RESUMO

N-methyl-D-aspartate receptors (NMDARs) uniquely require binding of two different neurotransmitter agonists for synaptic transmission. D-serine and glycine bind to one subunit, GluN1, while glutamate binds to the other, GluN2. These agonists bind to the receptor's bi-lobed ligand-binding domains (LBDs), which close around the agonist during receptor activation. To better understand the unexplored mechanisms by which D-serine contributes to receptor activation, we performed multi-microsecond molecular dynamics simulations of the GluN1/GluN2A LBD dimer with free D-serine and glutamate agonists. Surprisingly, we observed D-serine binding to both GluN1 and GluN2A LBDs, suggesting that D-serine competes with glutamate for binding to GluN2A. This mechanism is confirmed by our electrophysiology experiments, which show that D-serine is indeed inhibitory at high concentrations. Although free energy calculations indicate that D-serine stabilizes the closed GluN2A LBD, its inhibitory behavior suggests that it either does not remain bound long enough or does not generate sufficient force for ion channel gating. We developed a workflow using pathway similarity analysis to identify groups of residues working together to promote binding. These conformation-dependent pathways were not significantly impacted by the presence of N-linked glycans, which act primarily by interacting with the LBD bottom lobe to stabilize the closed LBD.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Serina
6.
Mol Cell ; 82(23): 4548-4563.e4, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309015

RESUMO

Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Transmissão Sináptica , Subunidades Proteicas/metabolismo
7.
ChemMedChem ; 17(21): e202200484, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36169098

RESUMO

Under physiological conditions, N-Methyl-D-Aspartate (NMDA) receptors play a crucial role for synaptic plasticity, long-term potentiation and long-term depression. However, overactivation of NMDA receptors can result in excitotoxicity, which is associated with various neurological and neurodegenerative diseases. The physiological properties of NMDA receptors are strongly dependent on the GluN2 subunit incorporated into the heterotetrameric NMDA receptor. Therefore, subtype selective NMDA receptor modulators are of high interest. Since prototypical GluN2A-NMDA receptor antagonists TCN-201 and its MPX-analogs adopt a U-shaped conformation within the binding pocket, paracyclophanes were designed containing the phenyl rings in an already parallel orientation. Docking studies of the designed paracyclophanes show a similar binding pose as TCN-201. [2.2]Paracyclophanes with a benzoate or benzamide side chain were prepared in four-step synthesis, respectively, starting with a radical bromination in benzylic 1-position of [2.2]paracyclophane. In two-electrode voltage clamp experiments using Xenopus laevis oocytes transfected with cRNAs for the GluN1-4a and GluN2A subunits, the esters and amides (conc. 10 µM) did not show considerable inhibition of ion flux. It can be concluded that the GluN2A-NMDA receptor does not accept ligands with a paracyclophane scaffold functionalized in benzylic 1-position, although docking studies had revealed promising binding poses for benzoic acid esters and benzamides.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Receptores de N-Metil-D-Aspartato , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas de Patch-Clamp , Xenopus laevis , Oócitos
8.
Nat Struct Mol Biol ; 29(6): 507-518, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35637422

RESUMO

Excitatory signaling mediated by N-methyl-D-aspartate receptor (NMDAR) is critical for brain development and function, as well as for neurological diseases and disorders. Channel blockers of NMDARs are of medical interest owing to their potential for treating depression, Alzheimer's disease, and epilepsy. However, precise mechanisms underlying binding and channel blockade have remained limited owing to challenges in obtaining high-resolution structures at the binding site within the transmembrane domains. Here, we monitor the binding of three clinically important channel blockers: phencyclidine, ketamine, and memantine in GluN1-2B NMDARs at local resolutions of 2.5-3.5 Å around the binding site using single-particle electron cryo-microscopy, molecular dynamics simulations, and electrophysiology. The channel blockers form different extents of interactions with the pore-lining residues, which control mostly off-speeds but not on-speeds. Our comparative analyses of the three unique NMDAR channel blockers provide a blueprint for developing therapeutic compounds with minimal side effects.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Sítios de Ligação , Memantina/farmacologia , Simulação de Dinâmica Molecular , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Nat Commun ; 13(1): 923, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177668

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/ultraestrutura , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/farmacologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/isolamento & purificação , Região Variável de Imunoglobulina/farmacologia , Região Variável de Imunoglobulina/ultraestrutura , Simulação de Dinâmica Molecular , Oócitos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/ultraestrutura , Células Sf9 , Spodoptera , Xenopus laevis
10.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
11.
Methods Enzymol ; 653: 3-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099177

RESUMO

Despite major advances in methodologies for membrane protein production over the last two decades, there remain challenging protein complexes that are technically difficult to yield by conventional recombinant expression methods. A large number of these proteins are multimeric membrane proteins from eukaryotic species, which are required to pass through stringent quality control mechanisms of host cells for proper folding and complex assembly. Here, we describe the development procedure to improve the production efficiency of multi-oligomeric membrane protein complexes in insect cells and recombinant baculovirus, which involves screening of promoters, enhancers, and untranslated regions for expression levels, using calcium homeostasis modulator (CALHM) and N-methyl-d-aspartate receptor (NMDAR) proteins as examples. We demonstrate that our insect cell expression strategy is effective in expression of both multi-homomeric CALHM proteins and multi-heteromeric NMDARs.


Assuntos
Baculoviridae , Proteínas de Membrana , Animais , Baculoviridae/genética , Insetos , Proteínas de Membrana/genética , Receptores de N-Metil-D-Aspartato
12.
J Mol Biol ; 433(17): 166994, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33865869

RESUMO

Membrane transport is a fundamental means to control basic cellular processes such as apoptosis, inflammation, and neurodegeneration and is mediated by a number of transporters, pumps, and channels. Accumulating evidence over the last half century has shown that a type of so-called "large-pore channel" exists in various tissues and organs in gap-junctional and non-gap-junctional forms in order to flow not only ions but also metabolites such as ATP. They are formed by a number of protein families with little or no evolutionary linkages including connexin, innexin, pannexin, leucine-rich repeat-containing 8 (LRRC8), and calcium homeostasis modulator (CALHM). This review summarizes the history and concept of large-pore channels starting from connexin gap junction channels to the more recent developments in innexin, pannexin, LRRC8, and CALHM. We describe structural and functional features of large-pore channels that are crucial for their diverse functions on the basis of available structures.


Assuntos
Canais Iônicos/metabolismo , Íons/metabolismo , Animais , Transporte Biológico/fisiologia , Junções Comunicantes/metabolismo , Humanos
14.
Cell ; 182(2): 357-371.e13, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610085

RESUMO

Excitatory neurotransmission meditated by glutamate receptors including N-methyl-D-aspartate receptors (NMDARs) is pivotal to brain development and function. NMDARs are heterotetramers composed of GluN1 and GluN2 subunits, which bind glycine and glutamate, respectively, to activate their ion channels. Despite importance in brain physiology, the precise mechanisms by which activation and inhibition occur via subunit-specific binding of agonists and antagonists remain largely unknown. Here, we show the detailed patterns of conformational changes and inter-subunit and -domain reorientation leading to agonist-gating and subunit-dependent competitive inhibition by providing multiple structures in distinct ligand states at 4 Å or better. The structures reveal that activation and competitive inhibition by both GluN1 and GluN2 antagonists occur by controlling the tension of the linker between the ligand-binding domain and the transmembrane ion channel of the GluN2 subunit. Our results provide detailed mechanistic insights into NMDAR pharmacology, activation, and inhibition, which are fundamental to the brain physiology.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Sítios de Ligação , Ligação Competitiva , Microscopia Crioeletrônica , Cristalografia por Raios X , Dimerização , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicina/química , Glicina/metabolismo , Humanos , Ligantes , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Subunidades Proteicas/agonistas , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
15.
J Physiol ; 598(15): 3071-3083, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468591

RESUMO

Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.


Assuntos
Distinções e Prêmios , Canais Iônicos de Abertura Ativada por Ligante , Fenômenos Biofísicos , Ácido Glutâmico , Humanos , Receptores de Glutamato
16.
Nat Struct Mol Biol ; 27(3): 305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066965

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Elife ; 92020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32048993

RESUMO

Pannexins are large-pore forming channels responsible for ATP release under a variety of physiological and pathological conditions. Although predicted to share similar membrane topology with other large-pore forming proteins such as connexins, innexins, and LRRC8, pannexins have minimal sequence similarity to these protein families. Here, we present the cryo-EM structure of a frog pannexin 1 (Panx1) channel at 3.0 Å. We find that Panx1 protomers harbor four transmembrane helices similar in arrangement to other large-pore forming proteins but assemble as a heptameric channel with a unique constriction formed by Trp74 in the first extracellular loop. Mutating Trp74 or the nearby Arg75 disrupt ion selectivity, whereas altering residues in the hydrophobic groove formed by the two extracellular loops abrogates channel inhibition by carbenoxolone. Our structural and functional study establishes the extracellular loops as important structural motifs for ion selectivity and channel inhibition in Panx1.


Assuntos
Conexinas/ultraestrutura , Proteínas de Xenopus/ultraestrutura , Sequência de Aminoácidos , Animais , Carbenoxolona/farmacologia , Conexinas/antagonistas & inibidores , Conexinas/química , Conexinas/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis
18.
Nat Struct Mol Biol ; 27(2): 150-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988524

RESUMO

The biological membranes of many cell types contain large-pore channels through which a wide variety of ions and metabolites permeate. Examples include connexin, innexin and pannexin, which form gap junctions and/or bona fide cell surface channels. The most recently identified large-pore channels are the calcium homeostasis modulators (CALHMs), through which ions and ATP permeate in a voltage-dependent manner to control neuronal excitability, taste signaling and pathologies of depression and Alzheimer's disease. Despite such critical biological roles, the structures and patterns of their oligomeric assembly remain unclear. Here, we reveal the structures of two CALHMs, chicken CALHM1 and human CALHM2, by single-particle cryo-electron microscopy (cryo-EM), which show novel assembly of the four transmembrane helices into channels of octamers and undecamers, respectively. Furthermore, molecular dynamics simulations suggest that lipids can favorably assemble into a bilayer within the larger CALHM2 pore, but not within CALHM1, demonstrating the potential correlation between pore size, lipid accommodation and channel activity.


Assuntos
Proteínas Aviárias/metabolismo , Canais de Cálcio/metabolismo , Galinhas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Cálcio/metabolismo , Canais de Cálcio/química , Microscopia Crioeletrônica , Homeostase , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
19.
Nat Commun ; 11(1): 423, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969570

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) play critical roles in the central nervous system. Their heterotetrameric composition generates subtypes with distinct functional properties and spatio-temporal distribution in the brain, raising the possibility for subtype-specific targeting by pharmacological means for treatment of neurological diseases. While specific compounds for GluN2A and GluN2B-containing NMDARs are well established, those that target GluN2C and GluN2D are currently underdeveloped with low potency and uncharacterized binding modes. Here, using electrophysiology and X-ray crystallography, we show that UBP791 ((2S*,3R*)-1-(7-(2-carboxyethyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) inhibits GluN2C/2D with 40-fold selectivity over GluN2A-containing receptors, and that a methionine and a lysine residue in the ligand binding pocket (GluN2D-Met763/Lys766, GluN2C-Met736/Lys739) are the critical molecular elements for the subtype-specific binding. These findings led to development of UBP1700 ((2S*,3R*)-1-(7-(2-carboxyvinyl)phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid) which shows over 50-fold GluN2C/2D-selectivity over GluN2A with potencies in the low nanomolar range. Our study shows that the L-glutamate binding site can be targeted for GluN2C/2D-specific inhibition.


Assuntos
Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Animais , Sítios de Ligação , Ligação Competitiva , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus laevis
20.
Curr Opin Struct Biol ; 54: 34-42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30703613

RESUMO

N-Methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels, which are critically involved in brain development, learning and memory, cognition, as well as a number of neurological diseases and disorders. Structural biology of NMDARs has been challenging due to technical difficulties associated with assembling a number of different membrane protein subunits. Here, we review historical X-ray crystallographic studies on isolated extracellular domains, which are still the most effective mean to delineate compound binding modes, as well as the most recent studies using electron cryo-microscopy (cryo-EM). A number of NMDAR structures accumulated over the past 15 years provide insights into the hetero-tetrameric assembly pattern, pharmacological specificities elicited by subtypes and alternative splicing, and potential patterns of conformational dynamics; however, many more important unanswered questions remain.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cristalografia por Raios X , Espaço Extracelular/metabolismo , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...