Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Front Psychiatry ; 14: 1156617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363170

RESUMO

Introduction: Measuring whole-brain networks of the 40 Hz auditory steady state response (ASSR) is a promising approach to describe the after-effects of transcranial direct current stimulation (tDCS). The main objective of this study was to evaluate the effect of tDCS on the brain network of 40 Hz ASSR in healthy adult males using graph theory. The second objective was to identify a population in which tDCS effectively modulates the brain network of 40 Hz ASSR. Methods: This study used a randomized, sham-controlled, double-blinded crossover approach. Twenty-five adult males (20-24 years old) completed two sessions at least 1 month apart. The participants underwent cathodal or sham tDCS of the dorsolateral prefrontal cortex, after which 40 Hz ASSR was measured using magnetoencephalography. After the signal sources were mapped onto the Desikan-Killiany brain atlas, the statistical relationships between localized activities were evaluated in terms of the debiased weighted phase lag index (dbWPLI). Weighted and undirected graphs were constructed for the tDCS and sham conditions based on the dbWPLI. Weighted characteristic path lengths and clustering coefficients were then measured and compared between the tDCS and sham conditions using mixed linear models. Results: The characteristic path length was significantly lower post-tDCS simulation (p = 0.04) than after sham stimulation. This indicates that after tDCS simulation, the whole-brain networks of 40 Hz ASSR show a significant functional integration. Simple linear regression showed a higher characteristic path length at baseline, which was associated with a larger reduction in characteristic path length after tDCS. Hence, a pronounced effect of tDCS is expected for those who have a less functionally integrated network of 40 Hz ASSR. Discussion: Given that the healthy brain is functionally integrated, we conclude that tDCS could effectively normalize less functionally integrated brain networks rather than enhance functional integration.

3.
Entropy (Basel) ; 23(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807381

RESUMO

Recently, measuring the complexity of body movements during sleep has been proven as an objective biomarker of various psychiatric disorders. Although sleep problems are common in children with autism spectrum disorder (ASD) and might exacerbate ASD symptoms, their objectivity as a biomarker remains to be established. Therefore, details of body movement complexity during sleep as estimated by actigraphy were investigated in typically developing (TD) children and in children with ASD. Several complexity analyses were applied to raw and thresholded data of actigraphy from 17 TD children and 17 children with ASD. Determinism, irregularity and unpredictability, and long-range temporal correlation were examined respectively using the false nearest neighbor (FNN) algorithm, information-theoretic analyses, and detrended fluctuation analysis (DFA). Although the FNN algorithm did not reveal determinism in body movements, surrogate analyses identified the influence of nonlinear processes on the irregularity and long-range temporal correlation of body movements. Additionally, the irregularity and unpredictability of body movements measured by expanded sample entropy were significantly lower in ASD than in TD children up to two hours after sleep onset and at approximately six hours after sleep onset. This difference was found especially for the high-irregularity period. Through this study, we characterized details of the complexity of body movements during sleep and demonstrated the group difference of body movement complexity across TD children and children with ASD. Complexity analyses of body movements during sleep have provided valuable insights into sleep profiles. Body movement complexity might be useful as a biomarker for ASD.

4.
Front Psychiatry ; 11: 531801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101073

RESUMO

Despite growing evidence of aberrant neuronal complexity in Alzheimer's disease (AD), it remains unclear how this variation arises. Neural oscillations reportedly comprise different functions depending on their own properties. Therefore, in this study, we investigated details of the complexity of neural oscillations by decomposing the oscillations into frequency, amplitude, and phase for AD patients. We applied resting-state magnetoencephalography (MEG) to 17 AD patients and 21 healthy control subjects. We first decomposed the source time series of the MEG signal into five intrinsic mode functions using ensemble empirical mode decomposition. We then analyzed the temporal complexities of these time series using multiscale entropy. Results demonstrated that AD patients had lower complexity on short time scales and higher complexity on long time scales in the alpha band in temporal regions of the brain. We evaluated the alpha band complexity further by decomposing it into amplitude and phase using Hilbert spectral analysis. Consequently, we found lower amplitude complexity and higher phase complexity in AD patients. Correlation analyses between spectral complexity and decomposed complexities revealed scale-dependency. Specifically, amplitude complexity was positively correlated with spectral complexity on short time scales, whereas phase complexity was positively correlated with spectral complexity on long time scales. Regarding the relevance of cognitive function to the complexity measures, the phase complexity on the long time scale was found to be correlated significantly with the Mini-Mental State Examination score. Additionally, we examined the diagnostic utility of the complexity characteristics using machine learning (ML) methods. We prepared a feature pool using multiple sparse autoencoders (SAEs), chose some discriminating features, and applied them to a support vector machine (SVM). Compared to the simple SVM and the SVM after feature selection (FS + SVM), the SVM with multiple SAEs (SAE + FS + SVM) had improved diagnostic accuracy. Through this study, we 1) advanced the understanding of neuronal complexity in AD patients using decomposed temporal complexity analysis and 2) demonstrated the effectiveness of combining ML methods with information about signal complexity for the diagnosis of AD.

5.
Front Psychiatry ; 11: 746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848924

RESUMO

Mental imagery behaviors of various modalities include visual, auditory, and motor behaviors. Their alterations are pathologically involved in various psychiatric disorders. Results of earlier studies suggest that imagery behaviors are correlated with the modulated activities of the respective modality-specific regions and the additional activities of supramodal imagery-related regions. Additionally, despite the availability of complexity analysis in the neuroimaging field, it has not been used for neural decoding approaches. Therefore, we sought to characterize neural oscillation related to multimodal imagery through complexity-based neural decoding. For this study, we modified existing complexity measures to characterize the time evolution of temporal complexity. We took magnetoencephalography (MEG) data of eight healthy subjects as they performed multimodal imagery and non-imagery tasks. The MEG data were decomposed into amplitude and phase of sub-band frequencies by Hilbert-Huang transform. Subsequently, we calculated the complexity values of each reconstructed time series, along with raw data and band power for comparison, and applied these results as inputs to decode visual perception (VP), visual imagery (VI), motor execution (ME), and motor imagery (MI) functions. Consequently, intra-subject decoding with the complexity yielded a characteristic sensitivity map for each task with high decoding accuracy. The map is inverted in the occipital regions between VP and VI and in the central regions between ME and MI. Additionally, replacement of the labels into two classes as imagery and non-imagery also yielded better classification performance and characteristic sensitivity with the complexity. It is particularly interesting that some subjects showed characteristic sensitivities not only in modality-specific regions, but also in supramodal regions. These analyses indicate that two-class and four-class classifications each provided better performance when using complexity than when using raw data or band power as input. When inter-subject decoding was used with the same model, characteristic sensitivity maps were also obtained, although their decoding performance was lower. Results of this study underscore the availability of complexity measures in neural decoding approaches and suggest the possibility of a modality-independent imagery-related mechanism. The use of time evolution of temporal complexity in neural decoding might extend our knowledge of the neural bases of hierarchical functions in the human brain.

6.
Autism Res ; 10(5): 821-828, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28266806

RESUMO

Oxytocin (OT) and the serotonergic system putatively play important roles in autism spectrum disorder (ASD) etiology and symptoms, but no direct neurobiological evidence exists for long-term OT administration effects on the brain's serotonergic system. This pilot study examined 10 male participants with ASD who were administered OT intranasally for 8-10 weeks in an open-label, single-arm, nonrandomized, and uncontrolled manner. Positron emission tomography (PET) with a radiotracer (11 C)-3-amino-4-(2-[(dimethylamino)methyl]phenylthio)benzonitrile (11 C-DASB) was used before and after OT treatment. The binding potential of serotonin transporter (11 C-DASB BPND ) was then estimated. The main outcome measures were changes in 11 C-DASB BPND and their correlation with changes in symptoms. ASD participants showed significantly elevated 11 C-DASB BPND in the left inferior frontal gyrus extending to the left middle frontal gyrus. No significant correlation was found between the change in any clinical symptom and the change in 11 C-DASB BPND . This report of a pilot study is the first describing long-term effects of OT on the brain's serotonin system in ASD. Additional randomized controlled studies must be conducted to confirm whether activation of the serotonergic system contributes to the prosocial effect of OT in people with ASD. Autism Res 2017, 10: 821-828. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/metabolismo , Ocitocina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Projetos Piloto , Serotonina/metabolismo , Adulto Jovem
7.
Sci Rep ; 6: 34977, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721481

RESUMO

Spontaneous face-to-face interactions between mothers and their children play crucial roles in the development of social minds; however, these inter-brain dynamics are still unclear. In this pilot study, we measured MEG mu suppression during face-to-face spontaneous non-linguistic interactions between mothers and their children with autism spectrum disorder (ASD) using the MEG hyperscanning system (i.e., simultaneous recording). The results demonstrated significant correlations between the index of mu suppression (IMS) in the right precentral area and the traits (or severity) of ASD in 13 mothers and 8 children (MEG data from 5 of the children could not be obtained due to motion noise). In addition, higher IMS values (i.e., strong mu suppression) in mothers were associated with higher IMS values in their children. To evaluate the behavioral contingency between mothers and their children, we calculated cross correlations between the magnitude of the mother and child head-motion during MEG recordings. As a result, in mothers whose head motions tended to follow her child's head motion, the magnitudes of mu suppression in the mother's precentral area were large. Further studies with larger sample sizes, including typically developing children, are necessary to generalize this result to typical interactions between mothers and their children.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Ondas Encefálicas , Relações Mãe-Filho , Córtex Motor/fisiologia , Adulto , Comportamento , Criança , Pré-Escolar , Feminino , Movimentos da Cabeça , Humanos , Magnetoencefalografia/métodos , Masculino
8.
PLoS One ; 11(4): e0153077, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27074011

RESUMO

Autism spectrum disorder (ASD) has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical interhemispheric circuitry. In the context of ASD, alterations in both peripheral and central auditory processes have also attracted a great deal of interest because these changes appear to represent pathophysiological processes; therefore, many prior studies have focused on atypical auditory responses in ASD. The auditory evoked field (AEF), recorded by magnetoencephalography, and the synchronization of these processes between right and left hemispheres was recently suggested to reflect various cognitive abilities in children. However, to date, no previous study has focused on AEF synchronization in ASD subjects. To assess global coordination across spatially distributed brain regions, the analysis of Omega complexity from multichannel neurophysiological data was proposed. Using Omega complexity analysis, we investigated the global coordination of AEFs in 3-8-year-old typically developing (TD) children (n = 50) and children with ASD (n = 50) in 50-ms time-windows. Children with ASD displayed significantly higher Omega complexities compared with TD children in the time-window of 0-50 ms, suggesting lower whole brain synchronization in the early stage of the P1m component. When we analyzed the left and right hemispheres separately, no significant differences in any time-windows were observed. These results suggest lower right-left hemispheric synchronization in children with ASD compared with TD children. Our study provides new evidence of aberrant neural synchronization in young children with ASD by investigating auditory evoked neural responses to the human voice.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Lateralidade Funcional/fisiologia , Percepção da Fala/fisiologia , Vias Auditivas/fisiopatologia , Mapeamento Encefálico , Criança , Pré-Escolar , Feminino , Humanos , Masculino
9.
PLoS One ; 10(7): e0132472, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161796

RESUMO

The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Dieta , Óleos de Peixe/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Administração Oral , Animais , Relógios Circadianos/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Embrião de Mamíferos/citologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Óleo de Soja/farmacologia , Estreptozocina , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia
10.
PLoS One ; 10(2): e0116918, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659131

RESUMO

Deficits in attentional-inhibitory control have been reported to correlate to anger, hostility, and aggressive behavior; therefore, inhibitory control appears to play an important role in prosocial behavior. Moreover, recent studies have demonstrated that oxytocin (OT) exerts a prosocial effect (e.g., decreasing negative behaviors, such as aggression) on humans. However, it is unknown whether the positively valenced effect of OT on sociality is associated with enhanced attentional-inhibitory control. In the present study, we hypothesized that OT enhances attentional-inhibitory control and that the positively valenced effect of OT on social cognition is associated with enhanced attentional-inhibitory control. In a single-blind, placebo-controlled crossover trial, we tested this hypothesis using 20 healthy male volunteers. We considered a decrease in the hostility detection ratio, which reflects the positively valenced interpretation of other individuals' facial expressions, to be an index of the positively valenced effects of OT (we reused the results of our previously published study). As a measure of attentional-inhibitory control, we employed a modified version of the flanker task (i.e., a shorter conflict duration indicated higher inhibitory control). These results failed to demonstrate any significant behavioral effects of OT (i.e., neither a positively valenced effect on facial cognition nor an effect on attentional-inhibitory control). However, the enhancement of attentional-inhibitory control after OT administration significantly correlated to the positively valenced effects on the interpretation of uncertain facial cognition (i.e., neutral and ambiguous facial expressions).


Assuntos
Atenção/efeitos dos fármacos , Emoções Manifestas , Ocitocina/administração & dosagem , Percepção Visual/efeitos dos fármacos , Adulto , Face , Humanos , Masculino , Pessoa de Meia-Idade
11.
Neuroimage ; 101: 440-7, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25067819

RESUMO

The relationship between language development in early childhood and the maturation of brain functions related to the human voice remains unclear. Because the development of the auditory system likely correlates with language development in young children, we investigated the relationship between the auditory evoked field (AEF) and language development using non-invasive child-customized magnetoencephalography (MEG) in a longitudinal design. Twenty typically developing children were recruited (aged 36-75 months old at the first measurement). These children were re-investigated 11-25 months after the first measurement. The AEF component P1m was examined to investigate the developmental changes in each participant's neural brain response to vocal stimuli. In addition, we examined the relationships between brain responses and language performance. P1m peak amplitude in response to vocal stimuli significantly increased in both hemispheres in the second measurement compared to the first measurement. However, no differences were observed in P1m latency. Notably, our results reveal that children with greater increases in P1m amplitude in the left hemisphere performed better on linguistic tests. Thus, our results indicate that P1m evoked by vocal stimuli is a neurophysiological marker for language development in young children. Additionally, MEG is a technique that can be used to investigate the maturation of the auditory cortex based on auditory evoked fields in young children. This study is the first to demonstrate a significant relationship between the development of the auditory processing system and the development of language abilities in young children.


Assuntos
Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Desenvolvimento da Linguagem , Magnetoencefalografia/métodos , Biomarcadores , Criança , Pré-Escolar , Feminino , Lateralidade Funcional/fisiologia , Humanos , Estudos Longitudinais , Magnetoencefalografia/instrumentação , Masculino , Percepção da Fala/fisiologia
12.
PLoS One ; 8(4): e62391, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23620827

RESUMO

Both orexin and neurotensin are expressed in the lateral hypothalamic area (LHA) and have been implicated in the regulation of feeding, motor activity and the reward system. A double label immunofluorescence and in situ hybridization studies showed that neurotensin colocalizes with orexin in neurons of the LHA. Pharmacological studies suggested that neurotensin excites orexin-producing neurons (orexin neurons) through activation of neurotensin receptor-2 (NTSR-2) and non-selective cation channels. In situ hybridization study showed that most orexin neurons express neurotensin receptor-2 mRNA but not neurotensin receptor-1 (Ntsr-1) mRNA. Immunohistochemical studies showed that neurotensin-immunoreactive fibers make appositions to orexin neurons. A neurotensin receptor antagonist decreased Fos expression in orexin neurons and wakefulness time in wild type mice when administered intraperitoneally. However, the antagonist did not evoke any effect on these parameters in orexin neuron-ablated mice. These observations suggest the importance of neurotensin in maintaining activity of orexin neurons. The evidence presented here expands our understanding of the regulatory mechanism of orexin neurons.


Assuntos
Hipotálamo/citologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotensina/metabolismo , Sono , Vigília , Animais , Hipotálamo/efeitos dos fármacos , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurotensina/antagonistas & inibidores , Orexinas , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores de Neurotensina/metabolismo , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
13.
Nutr Res ; 33(2): 109-19, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23399661

RESUMO

Restricting feeding to daytime can entrain circadian clocks in peripheral organs of rodents, and nutrients that rapidly increase the blood glucose level are suitable for inducing entrainment. However, dietetic issues, for example, whether or not the diet comprises heated food, have not been fully explored. We therefore hypothesized that rapidly digested starch causes stronger entrainment than slowly digested starch. The entrainment ability of the liver clock in PER2::LUCIFERASE knock-in mice, blood glucose levels, insulin levels, and acute changes in liver clock gene expression were compared between a ß-starch (native)-substituted AIN-93M standard diet and an α-starch (gelatinized)-substituted diet. ß-Corn and ß-rice starch induced larger phase delays of the liver clock, larger blood glucose increases, and higher Per2 gene expression in the liver compared with ß-potato starch. Starch granule size, as examined by electron microscopy, was larger for ß-potato starch than for ß-corn or ß-rice starch. After heating, we obtained gelatinized α-potato, α-corn, and α-rice starch, which showed destruction of the crystal structure and a high level of gelatinization. No difference in the increase of blood glucose or insulin levels was observed between ß-corn and α-corn starch, or between ß-rice and α-rice starch. In contrast, α-potato starch caused higher levels of glucose and insulin compared with ß-potato starch. An α-potato starch-substituted diet induced larger phase delays of the liver clock than did ß-potato starch. Therefore, rapidly digested starch is appropriate for peripheral clock entrainment. Dietetic issues (heated vs unheated) are important when applying basic mouse data to humans.


Assuntos
Relógios Biológicos/genética , Glicemia/metabolismo , Carboidratos da Dieta/metabolismo , Comportamento Alimentar/fisiologia , Fígado/fisiologia , Proteínas Circadianas Period/genética , Amido/metabolismo , Animais , Cristalização , Dieta , Digestão/fisiologia , Géis , Temperatura Alta , Insulina/sangue , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oryza , Tamanho da Partícula , Proteínas Circadianas Period/metabolismo , Solanum tuberosum , Zea mays
14.
PLoS One ; 7(4): e35390, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22545105

RESUMO

Neuropeptide B/W receptor-1 (NPBWR1) is expressed in discrete brain regions in rodents and humans, with particularly strong expression in the limbic system, including the central nucleus of the amygdala. Recently, Nagata-Kuroiwa et al. reported that Npbwr1(-/-) mice showed changes in social behavior, suggesting that NPBWR1 plays important roles in the emotional responses of social interactions.The human NPBWR1 gene has a single nucleotide polymorphism at nucleotide 404 (404A>T; SNP rs33977775). This polymorphism results in an amino acid change, Y135F. The results of an in vitro experiment demonstrated that this change alters receptor function. We investigated the effect of this variation on emotional responses to stimuli of showing human faces with four categories of emotional expressions (anger, fear, happiness, and neutral). Subjects' emotional levels on seeing these faces were rated on scales of hedonic valence, emotional arousal, and dominance (V-A-D). A significant genotype difference was observed in valence evaluation; the 404AT group perceived facial expressions more pleasantly than did the 404AA group, regardless of the category of facial expression. Statistical analysis of each combination of [V-A-D and facial expression] also showed that the 404AT group tended to feel less submissive to an angry face than did the 404AA group. Thus, a single nucleotide polymorphism of NPBWR1 seems to affect human behavior in a social context.


Assuntos
Expressão Facial , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Emoções/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Testes de Personalidade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Adulto Jovem
15.
Curr Biol ; 22(11): 1029-34, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22578421

RESUMO

The mammalian circadian system is comprised of a central clock in the suprachiasmatic nucleus (SCN) and a network of peripheral oscillators located in all of the major organ systems. The SCN is traditionally thought to be positioned at the top of the hierarchy, with SCN lesions resulting in an arrhythmic organism. However, recent work has demonstrated that the SCN and peripheral tissues generate independent circadian oscillations in Per1 clock gene expression in vitro. In the present study, we sought to clarify the role of the SCN in the intact system by recording rhythms in clock gene expression in vivo. A practical imaging protocol was developed that enables us to measure circadian rhythms easily, noninvasively, and longitudinally in individual mice. Circadian oscillations were detected in the kidney, liver, and submandibular gland studied in about half of the SCN-lesioned, behaviorally arrhythmic mice. However, their amplitude was decreased in these organs. Free-running periods of peripheral clocks were identical to those of activity rhythms recorded before the SCN lesion. Thus, we can report for the first time that many of the fundamental properties of circadian oscillations in peripheral clocks in vivo are maintained in the absence of SCN control.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Feminino , Rim/fisiologia , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Glândula Submandibular/fisiologia
16.
PLoS One ; 6(9): e25076, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949857

RESUMO

Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM) sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2)-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.


Assuntos
Glicinérgicos/farmacologia , Glicina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/efeitos dos fármacos , Neuropeptídeos , Sono/fisiologia , Vigília/fisiologia , Animais , Eletrofisiologia , Glicina/administração & dosagem , Glicinérgicos/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Glicina , Técnicas Imunoenzimáticas , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Neurônios/citologia , Orexinas , Receptores de Glicina/metabolismo , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
17.
PLoS One ; 6(2): e16972, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21390312

RESUMO

Neuropeptide B/W receptor 1 (NPBWR1) is a G-protein coupled receptor, which was initially reported as an orphan receptor, and whose ligands were identified by this and other groups in 2002 and 2003. To examine the physiological roles of NPBWR1, we examined phenotype of Npbwr1⁻/⁻ mice. When presented with an intruder mouse, Npbwr1⁻/⁻ mice showed impulsive contact with the strange mice, produced more intense approaches toward them, and had longer contact and chasing time along with greater and sustained elevation of heart rate and blood pressure compared to wild type mice. Npbwr1⁻/⁻ mice also showed increased autonomic and neuroendocrine responses to physical stress, suggesting that impairment of NPBWR1 leads to stress vulnerability. We also observed that these mice show abnormality in the contextual fear conditioning test. These data suggest that NPBWR1 plays a critical role in limbic system function and stress responses. Histological and electrophysiological studies showed that NPBWR1 acts as an inhibitory regulator on a subpopulation of GABAergic neurons in the lateral division of the CeA and terminates stress responses. These findings suggest important roles of NPBWR1 in regulating amygdala function during physical and social stress.


Assuntos
Medo/fisiologia , Memória/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Comportamento Social , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais/genética , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
18.
J Mol Neurosci ; 42(1): 106-11, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20467915

RESUMO

The neuropeptides orexin A and orexin B (also known as hypocretin 1 and hypocretin 2), produced in lateral hypothalamic neurons, are critical regulators of feeding behavior, the reward system, and sleep/wake states. Orexin-producing neurons (orexin neurons) are regulated by various factors involved in regulation of energy homeostasis and sleep/wakefulness states. Bombesin receptor subtype 3 (BRS3) is an orphan receptor that might be implicated in energy homeostasis and is highly expressed in the hypothalamus. However, the neural pathway by which BRS3 regulates energy homeostasis is largely unknown. We examined whether BRS3 is involved in the regulation of orexin neurons. Using a calcium imaging method, we found that a selective BRS3 agonist [Ac-Phe-Trp-Ala-His-(tauBzl)-Nip-Gly-Arg-NH2] increased the intracellular calcium concentration of orexin neurons. However, intracellular recordings from slice preparations revealed that the BRS3 agonist hyperpolarized orexin neurons. The BRS3 agonist depolarized orexin neuron in the presence of tetrodotoxin. Moreover, in the presence of GABA receptor blockers, picrotoxin and CGP55845, the BRS3 agonist induced depolarization and increased firing frequency. Additionally, double-label in situ hybridization study revealed that Brs3 mRNA was expressed in almost all orexin neurons and many cells around these neurons. These findings suggest that the BRS3 agonist indirectly inhibited orexin neurons through GABAergic input and directly activated orexin neurons. Inhibition of activity of orexin neurons through BRS3 might be an important pathway for regulation of feeding and sleep/wake states. This pathway might serve as a novel target for the treatment of obesity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores da Bombesina/metabolismo , Animais , Cálcio/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Neurônios/citologia , Neuropeptídeos/genética , Orexinas , Técnicas de Patch-Clamp , Receptores da Bombesina/agonistas , Receptores da Bombesina/genética , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...