Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493479

RESUMO

Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T-cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and redirection of various immune cell types, including conventional T-cells, TCRγ/δ T-cells, regulatory T-cells, and NK-cells. In T-cells, CD3ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3ζ-CD19-CAR-T-cells exhibited comparable leukemia control to T cell receptor alpha constant (TRAC)-replaced and lentivirus-transduced CAR-T-cells in vivo. Tuning of CD3ζ-CAR-expression levels significantly improved the in vivo efficacy. Notably, CD3ζ gene editing enabled redirection of NK-cells without impairing their canonical functions. Thus, CD3ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes.

2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116030

RESUMO

Chimeric antigen receptor (CAR)-reprogrammed immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3 ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3 ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and reprogramming of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3 ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3 ζ-CD19-CAR-T cells exhibited comparable leukemia control to T cell receptor alpha constant ( TRAC )-replaced and lentivirus-transduced CAR-T cells in vivo . Tuning of CD3 ζ-CAR-expression levels significantly improved the in vivo efficacy. Compared to TRAC -edited CAR-T cells, integration of a Her2-CAR into CD3 ζ conveyed similar in vitro tumor lysis but reduced susceptibility to activation-induced cell death and differentiation, presumably due to lower CAR-expression levels. Notably, CD3 ζ gene editing enabled reprogramming of NK cells without impairing their canonical functions. Thus, CD3 ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes. Key points: Integration of ζ-deficient CARs into CD3 ζ gene allows generation of functional TCR-ablated CAR-T cells for allogeneic off-the-shelf use CD3 ζ-editing platform allows CAR reprogramming of NK cells without affecting their canonical functions.

3.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430443

RESUMO

McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo V/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicogênio/metabolismo , Tecnologia
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201633

RESUMO

Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.


Assuntos
Mutação , Síndromes de Usher/genética , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Ciclo Celular/genética , Ciliopatias/etiologia , Ciliopatias/patologia , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Estudos de Associação Genética , Humanos , Proteínas de Membrana/genética , Miosina VIIa/genética , Mapas de Interação de Proteínas/genética , Síndromes de Usher/patologia
5.
Acta Ophthalmol ; 99(8): 922-930, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33576163

RESUMO

PURPOSE: We aimed to establish correlations between the clinical features of a cohort of Usher syndrome (USH) patients with pathogenic variants in MYO7A, type of pathogenic variant, and location on the protein domain. METHODS: Sixty-two USH patients from 46 families with biallelic variants in MYO7A were examined for visual and audiological features. Participants were evaluated based on self-reported ophthalmological history and ophthalmological investigations (computerized visual field testing, best-corrected visual acuity, and ophthalmoscopic and electrophysiological examination). Optical coherence tomography and fundus autofluorescence imaging were performed when possible. Auditory and vestibular functions were evaluated. Patients were classified according to the type of variant and the protein domain where the variants were located. RESULTS: Most patients displayed a typical USH1 phenotype, that is, prelingual severe-profound sensorineural hearing loss, prepubertal retinitis pigmentosa (RP) and vestibular dysfunction. No statistically significant differences were observed for the variables analysed except for the onset of hearing loss due to the existence of two USH2 cases, defined as postlingual sensorineural hearing loss, postpubertal onset of RP, and absence of vestibular dysfunction, and one atypical case of USH. CONCLUSION: We were unable to find a correlation between genotype and phenotype for MYO7A. However, our findings could prove useful for the assessment of efficacy in clinical trials, since the type of MYO7A variant does not seem to change the onset, severity or course of visual disease.


Assuntos
Ensaios Clínicos como Assunto , DNA/genética , Estudos de Associação Genética/métodos , Mutação de Sentido Incorreto , Miosina VIIa/genética , Síndromes de Usher/genética , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Feminino , Angiofluoresceinografia/métodos , Fundo de Olho , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Miosina VIIa/metabolismo , Linhagem , Fenótipo , Retina/diagnóstico por imagem , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Síndromes de Usher/diagnóstico , Adulto Jovem
6.
Genes (Basel) ; 11(5)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349249

RESUMO

Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética , Distrofias Retinianas/genética , Proteína 9 Associada à CRISPR/genética , Mutação da Fase de Leitura/genética , Heterogeneidade Genética , Terapia Genética/tendências , Humanos , Fenótipo , Distrofias Retinianas/patologia , Distrofias Retinianas/terapia
7.
Mol Vis ; 26: 216-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214787

RESUMO

Purpose: The aim of the present work is the molecular diagnosis of three patients with deafness and retinal degeneration. Methods: Three patients from two unrelated families were initially analyzed with custom gene panels for Usher genes, non-syndromic hearing loss, or inherited syndromic retinopathies and further investigated by means of clinical or whole exome sequencing. Results: The study allowed us to detect likely pathogenic variants in PEX6, a gene typically involved in peroxisomal biogenesis disorders (PBDs). Beside deaf-blindness, both families showed additional features: Siblings from Family 1 showed enamel alteration and abnormal peroxisome. In addition, the brother had mild neurodevelopmental delay and nephrolithiasis. The case II:1 from Family 2 showed intellectual disability, enamel alteration, and dysmorphism. Conclusions: We have reported three new cases with pathogenic variants in PEX6 presenting with milder forms of the Zellweger spectrum disorders (ZSD). The three cases showed distinct clinical features. Thus, expanding the phenotypic spectrum of PBDs and ascertaining exome sequencing is an effective strategy for an accurate diagnosis of clinically overlapping and genetically heterogeneous disorders such as deafness-blindness association.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Perda Auditiva Neurossensorial/genética , Retinose Pigmentar/genética , Síndrome de Zellweger/genética , Adulto , Criança , Anormalidades Craniofaciais/genética , Esmalte Dentário/anormalidades , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Nefrolitíase/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Peroxissomos/genética , Peroxissomos/metabolismo , Peroxissomos/patologia , Sequenciamento do Exoma
8.
Invest Ophthalmol Vis Sci ; 60(14): 4701-4710, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725169

RESUMO

Purpose: Usher syndrome (USH) is a rare disorder characterized by retinitis pigmentosa (RP) and sensorineural hearing loss. Several genes are responsible for the disease, but not all cases are explained by mutations in any of these, supporting the fact that there remain other unknown genes that have a role in the syndrome. We aimed to find the genetic cause of presumed USH patients lacking pathogenic mutations in the known USH genes. Methods: Whole exome sequencing was performed on a priori USH-diagnosed subjects from nine unrelated families, which had shown negative results for an USH-targeted panel in a previous study. Results: We identified possible pathogenic variants in six of the studied families. One patient harbored mutations in REEP6 and TECTA, each gene tentatively causative of one of the two main symptoms of the disease, mimicking the syndrome. In three patients, only the retinal degeneration causative mutations were detected (involving EYS, WDR19, and CNGB1 genes). Another family manifested a dementia-linked retinal dystrophy dependent on an allele dosage in the GRN gene. Last, another case presented a homozygous mutation in ASIC5, a gene not yet associated with USH. Conclusions: Our findings demonstrate that pending cases should be clinically and genetically carefully assessed, since more patients than expected may be either related phenocopies or affected by a more complex disease encompassing additional symptoms rather than classical USH.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Síndromes de Usher/genética , Sequenciamento Completo do Genoma , Canais Iônicos Sensíveis a Ácido/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Proteínas do Citoesqueleto/genética , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/genética , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Linhagem , Fenótipo , Progranulinas/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Síndromes de Usher/diagnóstico
9.
Front Genet ; 10: 501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231422

RESUMO

BACKGROUND: Usher syndrome (USH) is a recessive inherited disease characterized by sensorineural hearing loss, retinitis pigmentosa, and sometimes, vestibular dysfunction. Although the molecular epidemiology of Usher syndrome has been well studied in Europe and United States, there is a lack of studies in other regions like Africa or Central and South America. METHODS: We designed a NGS panel that included the 10 USH causative genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, ADGRV1, WHRN, and CLRN1), four USH associated genes (HARS, PDZD7, CEP250, and C2orf71), and the region comprising the deep-intronic c.7595-2144A>G mutation in USH2A. RESULTS: NGS sequencing was performed in 11 USH patients from Cuba. All the cases were solved. We found the responsible mutations in the USH2A, ADGRV1, CDH23, PCDH15, and CLRN1 genes. Four mutations have not been previously reported. Two mutations are recurrent in this study: c.619C>T (p.Arg207∗) in CLRN1, previously reported in two unrelated Spanish families of Basque origin, and c.4488G>C (p.Gln1496His) in CDH23, first described in a large Cuban family. Additionally, c.4488G>C has been reported two more times in the literature in two unrelated families of Spanish origin. CONCLUSION: Although the sample size is very small, it is tempting to speculate that the gene frequencies in Cuba are distinct from other populations mainly due to an "island effect" and genetic drift. The two recurrent mutations appear to be of Spanish origin. Further studies with a larger cohort are needed to elucidate the real genetic landscape of Usher syndrome in the Cuban population.

10.
Sci Rep ; 8(1): 17113, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459346

RESUMO

Usher syndrome is a rare disorder causing retinitis pigmentosa, together with sensorineural hearing loss. Due to the phenotypic and genetic heterogeneity of this disease, the best method to screen the causative mutations is by high-throughput sequencing. In this study, we tested a semiconductor chip based sequencing approach with 77 unrelated patients, as a molecular diagnosis routine. In addition, Multiplex Ligation-dependent Probe Amplification and microarray-based Comparative Genomic Hybridization techniques were applied to detect large rearrangements, and minigene assays were performed to confirm the mRNA processing aberrations caused by splice-site mutations. The designed panel included all the USH causative genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, ADGRV1, WHRN and CLRN1) as well as four uncertainly associated genes (HARS, PDZD7, CEP250 and C2orf71). The outcome showed an overall mutation detection ratio of 82.8% and allowed the identification of 42 novel putatively pathogenic mutations. Furthermore, we detected two novel nonsense mutations in CEP250 in a patient with a disease mimicking Usher syndrome that associates visual impairment due to cone-rod dystrophy and progressive hearing loss. Therefore, this approach proved reliable results for the molecular diagnosis of the disease and also allowed the consolidation of the CEP250 gene as disease causative for an Usher-like phenotype.


Assuntos
Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Análise Mutacional de DNA/métodos , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Feminino , Humanos , Masculino , Linhagem , Fenótipo
11.
Mol Ther Nucleic Acids ; 8: 529-541, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918053

RESUMO

Usher syndrome (USH) is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH.

12.
Orphanet J Rare Dis ; 9: 168, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404053

RESUMO

BACKGROUND: Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. METHODS: A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. RESULTS: Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. CONCLUSIONS: Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Síndromes de Usher/diagnóstico , Feminino , Perfilação da Expressão Gênica , Rearranjo Gênico , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Mutação , Mutação Puntual , Síndromes de Usher/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...