Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 235(3): 1246-1259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460285

RESUMO

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.


Assuntos
Liliaceae , Potentilla , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Hibridização in Situ Fluorescente , Filogenia , Potentilla/genética
2.
Gigascience ; 112022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333302

RESUMO

BACKGROUND: Cassava (Manihot esculenta) is an important clonally propagated food crop in tropical and subtropical regions worldwide. Genetic gain by molecular breeding has been limited, partially because cassava is a highly heterozygous crop with a repetitive and difficult-to-assemble genome. FINDINGS: Here we demonstrate that Pacific Biosciences high-fidelity (HiFi) sequencing reads, in combination with the assembler hifiasm, produced genome assemblies at near complete haplotype resolution with higher continuity and accuracy compared to conventional long sequencing reads. We present 2 chromosome-scale haploid genomes phased with Hi-C technology for the diploid African cassava variety TME204. With consensus accuracy >QV46, contig N50 >18 Mb, BUSCO completeness of 99%, and 35k phased gene loci, it is the most accurate, continuous, complete, and haplotype-resolved cassava genome assembly so far. Ab initio gene prediction with RNA-seq data and Iso-Seq transcripts identified abundant novel gene loci, with enriched functionality related to chromatin organization, meristem development, and cell responses. During tissue development, differentially expressed transcripts of different haplotype origins were enriched for different functionality. In each tissue, 20-30% of transcripts showed allele-specific expression (ASE) differences. ASE bias was often tissue specific and inconsistent across different tissues. Direction-shifting was observed in <2% of the ASE transcripts. Despite high gene synteny, the HiFi genome assembly revealed extensive chromosome rearrangements and abundant intra-genomic and inter-genomic divergent sequences, with large structural variations mostly related to LTR retrotransposons. We use the reference-quality assemblies to build a cassava pan-genome and demonstrate its importance in representing the genetic diversity of cassava for downstream reference-guided omics analysis and breeding. CONCLUSIONS: The phased and annotated chromosome pairs allow a systematic view of the heterozygous diploid genome organization in cassava with improved accuracy, completeness, and haplotype resolution. They will be a valuable resource for cassava breeding and research. Our study may also provide insights into developing cost-effective and efficient strategies for resolving complex genomes with high resolution, accuracy, and continuity.


Assuntos
Manihot , Alelos , Cromossomos , Diploide , Haplótipos , Manihot/genética , Melhoramento Vegetal , Análise de Sequência de DNA , Transcriptoma
3.
PLoS Genet ; 15(12): e1008512, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860672

RESUMO

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.


Assuntos
Aclimatação , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Locos de Características Quantitativas , Fluxo Gênico , Genética Populacional , Técnicas de Genotipagem , México , Repetições de Microssatélites , Fenótipo , Poaceae/classificação , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
4.
Nucleic Acids Res ; 47(15): 8050-8060, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31505675

RESUMO

Cas9-assisted targeting of DNA fragments in complex genomes is viewed as an essential strategy to obtain high-quality and continuous sequence data. However, the purity of target loci selected by pulsed-field gel electrophoresis (PFGE) has so far been insufficient to assemble the sequence in one contig. Here, we describe the µLAS technology to capture and purify high molecular weight DNA. First, the technology is optimized to perform high sensitivity DNA profiling with a limit of detection of 20 fg/µl for 50 kb fragments and an analytical time of 50 min. Then, µLAS is operated to isolate a 31.5 kb locus cleaved by Cas9 in the genome of the plant Medicago truncatula. Target purification is validated on a Bacterial Artificial Chromosome plasmid, and subsequently carried out in whole genome with µLAS, PFGE or by combining these techniques. PacBio sequencing shows an enrichment factor of the target sequence of 84 with PFGE alone versus 892 by association of PFGE with µLAS. These performances allow us to sequence and assemble one contig of 29 441 bp with 99% sequence identity to the reference sequence.


Assuntos
Sistemas CRISPR-Cas , DNA de Plantas/genética , Genoma de Planta/genética , Medicago truncatula/genética , Análise de Sequência de DNA/métodos , Cromossomos Artificiais Bacterianos , Biologia Computacional/métodos , DNA de Plantas/isolamento & purificação , Eletroforese em Gel de Campo Pulsado/métodos , Reprodutibilidade dos Testes
5.
Genome Biol Evol ; 7(1): 336-48, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25527839

RESUMO

In grasses such as rice or maize, the distribution of genic GC content is well known to be bimodal. It is mainly driven by GC content at third codon positions (GC3 for short). This feature is thought to be specific to grasses as closely related species like banana have a unimodal GC3 distribution. GC3 is associated with numerous genomics features and uncovering the origin of this peculiar distribution will help understanding the potential roles and consequences of GC3 variations within and between genomes. Until recently, the origin of the peculiar GC3 distribution in grasses has remained unknown. Thanks to the recent publication of several complete genomes and transcriptomes of nongrass monocots, we studied more than 1,000 groups of one-to-one orthologous genes in seven grasses and three outgroup species (banana, palm tree, and yam). Using a maximum likelihood-based method, we reconstructed GC3 at several ancestral nodes. We found that the bimodal GC3 distribution observed in extant grasses is ancestral to both grasses and most monocot species, and that other species studied here have lost this peculiar structure. We also found that GC3 in grass lineages is globally evolving very slowly and that the decreasing GC3 gradient observed from 5' to 3' along coding sequences is also conserved and ancestral to monocots. This result strongly challenges the previous views on the specificity of grass genomes and we discuss its implications for the possible causes of the evolution of GC content in monocots.


Assuntos
Composição de Bases/genética , Códon/genética , Evolução Molecular , Genoma de Planta , Funções Verossimilhança , Oryza/genética , Poaceae/genética , Zea mays/genética
6.
Brief Funct Genomics ; 13(4): 276-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24681749

RESUMO

The past decades have revealed an unexpected yet prominent role of so-called 'junk DNA' in the regulation of gene expression, thereby challenging our view of the mechanisms underlying phenotypic evolution. In particular, several mechanisms through which transposable elements (TEs) participate in functional genome diversity have been depicted, bringing to light the 'TEs bright side'. However, the relative contribution of those mechanisms and, more generally, the importance of TE-based polymorphisms on past and present phenotypic variation in crops species remain poorly understood. Here, we review current knowledge on both issues, and discuss how analyses of massively parallel sequencing data combined with statistical methodologies and functional validations will help unravelling the impact of TEs on crop evolution in a near future.


Assuntos
Produtos Agrícolas/genética , Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...