Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14090, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640847

RESUMO

Olfactory dysfunction associated with coronavirus 2 (SARS-CoV-2) infection is in most cases transient, recovering spontaneously within a few days. However, in some patients it persists for a long time, affects their everyday life and endangers their health. Hence, we focused on patients with persistent loss of smell. The aim of this study was to evaluate olfactory dysfunction using a standardized test. Due to the pandemic, olfactory testing was performed online. Smell tests (Odorized Markers Test, OMT) were sent home to the patients. Together with the smell self-testing, participants reported and assessed several parameters (age, sex, subjective assessment of smell and taste, nasal patency, etc.) in an online questionnaire. Based on the questionnaire outcomes, the results were sent to the patients along with a list of participating otolaryngologists who provided them with professional care. From March to June 2021, 1025 patients requested smell testing, of these, 824 met the inclusion criteria of this study. The duration of the olfactory dysfunction at the time of testing ranged from 1 month to 1 year. Using the OMT, impaired smell ability-anosmia or hyposmia-was confirmed in 82.6% of participants. A total of 17.4% of participants were determined to be normosmic however, more than 50% of them complained of parosmia and/or phantosmia. Our study demonstrates the relevance of psychophysical smell testing and its suitability for remote use during the pandemic. This study also revealed several correlations between prolonged olfactory dysfunction and the monitored parameters.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Olfato , COVID-19/complicações , SARS-CoV-2 , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/etiologia , Anosmia/etiologia
2.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239968

RESUMO

Endurance training prior to spinal cord injury (SCI) has a beneficial effect on the activation of signaling pathways responsible for survival, neuroplasticity, and neuroregeneration. It is, however, unclear which training-induced cell populations are essential for the functional outcome after SCI. Adult Wistar rats were divided into four groups: control, six weeks of endurance training, Th9 compression (40 g/15 min), and pretraining + Th9 compression. The animals survived six weeks. Training alone increased the gene expression and protein level of immature CNP-ase oligodendrocytes (~16%) at Th10, and caused rearrangements in neurotrophic regulation of inhibitory GABA/glycinergic neurons at the Th10 and L2 levels, known to contain the interneurons with rhythmogenic potential. Training + SCI upregulated markers for immature and mature (CNP-ase, PLP1) oligodendrocytes by ~13% at the lesion site and caudally, and increased the number of GABA/glycinergic neurons in specific spinal cord regions. In the pretrained SCI group, the functional outcome of hindlimbs positively correlated with the protein levels of CNP-ase, PLP1, and neurofilaments (NF-l), but not with the outgrowing axons (Gap-43) at the lesion site and caudally. These results indicate that endurance training applied before SCI potentiates the repair in damaged spinal cord, and creates a suitable environment for neurological outcome.


Assuntos
Treino Aeróbico , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Ratos Wistar , Neurônios/metabolismo , Axônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Neuroglia/metabolismo , Medula Espinal/metabolismo , Regeneração Nervosa/fisiologia , Ácido gama-Aminobutírico/metabolismo
3.
Neural Regen Res ; 17(12): 2730-2736, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662221

RESUMO

Oscillating field stimulation (OFS) with regular alterations in the polarity of electric current is a unique, experimental approach to stimulate, support, and potentially guide the outgrowth of both sensory and motor nerve fibers after spinal cord injury (SCI). In previous experiments, we demonstrated the beneficial effects of OFS in a 4-week survival period after SCI. In this study, we observed the major behavioral, morphological, and protein changes in rats after 15 minutes of T9 spinal compression with a 40 g force, followed by long-lasting OFS (50 µA), over a 8-week survival period. Three groups of rats were analyzed: rats after T9 spinal compression (SCI group); SCI rats subjected to implantation of active oscillating field stimulator (OFS + SCI group); and SCI rats subjected to nonfunctional OFS (nOFS + SCI group). Histopathological analysis of spinal tissue indicated a strong impact of epidural OFS on the reduction of tissue and myelin loss after SCI in the segments adjacent to the lesion site. Quantitative fluorescent analysis of the most affected areas of spinal cord tissue revealed a higher number of spared axons and oligodendrocytes of rats in the OFS + SCI group, compared with rats in the SCI and nOFS + SCI groups. The protein levels of neurofilaments (NF-l), growth-associated protein-43 (marker for newly sprouted axons), and myelin basic protein in rats were signifiantly increased in the OFS + SCI group than in the nOFS + SCI and SCI groups. This suggests a supporting role of the OFS in axonal and myelin regeneration after SCI. Moreover, rats in the OFS + SCI group showed great improvements in sensory and motor functions than did rats in the nOFS + SCI and SCI groups. All these findings suggest that long-lasting OFS applied immediately after SCI can provide a good microenviroment for recovery of damaged spinal tissue by triggering regenreative processes in the acute phase of injury.

4.
Mol Neurobiol ; 59(2): 950-967, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34811634

RESUMO

We aimed to investigate the effects of endurance training on expression of growth factors (GFs) and stimulation of neurotrophin-dependent signaling pathways (PI3k/Akt, PLCγ/PKC, PLCγ/CAMKII, Ras-Erk1/2 and Rac1-Cdc42) responsible for neuroplasticity, neuroregeneration, survival and growth after spinal cord injury (SCI). Wistar rats were divided into four groups: (i) intact controls; (ii) 6 weeks of endurance training; (iii) SCI; (iv) pre-training + SCI. The animals survived for 6 weeks after SCI. Firstly, endurance training markedly upregulated mRNA expression and protein levels (up to four times) of growth factors (BDNF, GDNF) and their receptors (TrkB, Gfrα) in low thoracic segments (Th8-Th10) compared to levels in untrained animals. Secondly, we found that spontaneous neuroplasticity seen in the SCI alone group was GF-specific and was activated through both PLCγ-PKC and PLC-CAMKII signaling pathways. In addition, training prior to SCI markedly increased the activity of PLCγ-PKC signaling at both transcript and protein levels at and around the lesion site. Similar effects were seen in expression of PI3k/Akt and Ras/Erk1/2 signaling responsible for cell survival and regeneration. Thirdly, rats which underwent physical activity prior to SCI were more active and had significantly better neurological scores at the 14th and 42nd days of survival. These results suggest that regular physical activity could play an important role after SCI, as it maintains increased expression of GFs in spinal cord tissue 6 weeks post-SCI. The BDNF- and/or BDNF + GDNF-dependent signaling pathways were significantly affected in pre-trained SCI animals. In contrast, GDNF-dependent Rac1-Cdc42 signaling was not involved in training-affected SCI response.


Assuntos
Treino Aeróbico , Transdução de Sinais , Traumatismos da Medula Espinal , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Recuperação de Função Fisiológica , Transdução de Sinais/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
5.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948371

RESUMO

Traumatic spinal cord injury (SCI) elicits an acute inflammatory response which comprises numerous cell populations. It is driven by the immediate response of macrophages and microglia, which triggers activation of genes responsible for the dysregulated microenvironment within the lesion site and in the spinal cord parenchyma immediately adjacent to the lesion. Recently published data indicate that microglia induces astrocyte activation and determines the fate of astrocytes. Conversely, astrocytes have the potency to trigger microglial activation and control their cellular functions. Here we review current information about the release of diverse signaling molecules (pro-inflammatory vs. anti-inflammatory) in individual cell phenotypes (microglia, astrocytes, blood inflammatory cells) in acute and subacute SCI stages, and how they contribute to delayed neuronal death in the surrounding spinal cord tissue which is spared and functional but reactive. In addition, temporal correlation in progressive degeneration of neurons and astrocytes and their functional interactions after SCI are discussed. Finally, the review highlights the time-dependent transformation of reactive microglia and astrocytes into their neuroprotective phenotypes (M2a, M2c and A2) which are crucial for spontaneous post-SCI locomotor recovery. We also provide suggestions on how to modulate the inflammation and discuss key therapeutic approaches leading to better functional outcome after SCI.


Assuntos
Neuroglia/patologia , Neurônios/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Gerenciamento Clínico , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Neuroglia/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia
6.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440711

RESUMO

Microglia and astrocytes play an important role in the regulation of immune responses under various pathological conditions. To detect environmental cues associated with the transformation of reactive microglia (M1) and astrocytes (A1) into their polarization states (anti-inflammatory M2 and A2 phenotypes), we studied time-dependent gene expression in naive and injured spinal cord. The relationship between astrocytes and microglia and their polarization states were studied in a rat model after Th9 compression (40 g/15 min) in acute and subacute stages at the lesion site, and both cranially and caudally. The gene expression of microglia/macrophages and M1 microglia was strongly up-regulated at the lesion site and caudally one week after SCI, and attenuated after two weeks post-SCI. GFAP and S100B, and A1 astrocytes were profoundly expressed predominantly two weeks post-SCI at lesion site and cranially. Gene expression of anti-inflammatory M2a microglia (CD206, CHICHI, IL1rn, Arg-1), M2c microglia (TGF-ß, SOCS3, IL4R α) and A2 astrocytes (Tgm1, Ptx3, CD109) was greatly activated at the lesion site one week post-SCI. In addition, we observed positive correlation between neurological outcome and expression of M2a, M2c, and A2 markers. Our findings indicate that the first week post-injury is critical for modulation of reactive microglia/astrocytes into their neuroprotective phenotypes.


Assuntos
Astrócitos/metabolismo , Comportamento Animal , Mediadores da Inflamação/metabolismo , Locomoção , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Microglia/imunologia , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Fenótipo , Ratos Wistar , Recuperação de Função Fisiológica , Transdução de Sinais , Medula Espinal/imunologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo
7.
Front Physiol ; 11: 700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655417

RESUMO

We previously reported NO/sGC signaling in the upper respiratory pathway, receiving input from the respiratory neurons of the brainstem to phrenic motoneurons in the C3-C6 spinal cord. In order to assess whether innervation of the neuromuscular junction (NMJ) at the diaphragm is modulated by sGC/cGMP signaling, we performed unilateral 8-day continuous ligation of the phrenic nerve in rats. We examined sGCß1 within the lower bulbospinal pathway (phrenic motoneurons, phrenic nerves and NMJs at the diaphragm) and the cGMP level in the contra- and ipsilateral hemidiaphragm. Additionally, we characterized the extent of phrenic nerve axonal degeneration and denervation at diaphragm NMJs. The results of our study show that continuous 8-day phrenic nerve ligation caused a marked increase in sGCß1 (immunoreactivity and the protein level) in the ipsilateral phrenic motor pool. However, the protein sGCß1 level in the phrenic nerve below its ligation and the cGMP level in the ipsilateral hemidiaphragm were evidently decreased. Using confocal analysis we discovered a reduction in sGCß1-IR boutons/synaptic vesicles at the ipsilateral MNJs. These findings are consistent with the marked axonal loss (∼47%) and significant NMJs degeneration in the ipsilateral diaphragm muscle. The remarkable unilateral decrease in cGMP level in the diaphragm and the failure of EMG recordings in the ipsilateral hemidiaphragm muscle can be attributed to the fact that sGC is involved in transmitter release at the diaphragm NMJs via the sGC-cGMP pathway.

8.
J Neurosci Methods ; 311: 102-110, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339879

RESUMO

BACKGROUND: Traumatic spinal cord injury (SCI) causes partial or total loss of sensory and motor functions. Despite enormous efforts, there is still no effective treatment which might improve patients' neurological status.The application of electric current to the injured spinal cord is known to promote healing and tissue regeneration. The use of this modality in treating the injured spinal cord to improve neurological recovery has been introduced as a potential treatment. NEW METHOD: Here we describe the method of epidural implantation of a miniature oscillating field (OF) stimulator designed in our laboratory immediately after Th9 spinal compression in Wistar rats. Three groups of animals were analyzed (intact; SCI only; OFS + SCI; n = 8 each). Histological, immunohistological and behavioral analysis were used to show the favorable effect of epidural OF stimulation on axonal regeneration and modulation of astrogliosis. RESULTS: Our study revealed considerable differences in white matter integrity in animals with an implanted OF stimulator. Moreover, we detected significantly increased numbers of neurofilaments and massive reduction in activated forms of astrocytes in the group of stimulated animals compared to the animals without stimulation. COMPARISON WITH EXISTING METHOD(S): Compared with previous research, our study revealed that epidural implantation of an OF stimulator immediately after spinal compression effectively reduced the expression of inflammatory response and suppressed activated astrocyte formation. CONCLUSIONS: Our finding confirms that implanting an OF stimulator is safe, stable and suitable for future combined therapy which could effectively promote and accelerate regeneration and functional restoration after spinal trauma.


Assuntos
Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Astrócitos/patologia , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Feminino , Filamentos Intermediários/patologia , Ratos Wistar , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
9.
Exp Ther Med ; 16(6): 4927-4942, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30542449

RESUMO

The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.

10.
Int J Mol Sci ; 19(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642434

RESUMO

The aim of our study was to limit the inflammatory response after a spinal cord injury (SCI) using Atorvastatin (ATR), a potent inhibitor of cholesterol biosynthesis. Adult Wistar rats were divided into five experimental groups: one control group, two Th9 compression (40 g/15 min) groups, and two Th9 compression + ATR (5 mg/kg, i.p.) groups. The animals survived one day and six weeks. ATR applied in a single dose immediately post-SCI strongly reduced IL-1ß release at 4 and 24 h and considerably reduced the activation of resident cells at one day post-injury. Acute ATR treatment effectively prevented the excessive infiltration of destructive M1 macrophages cranially, at the lesion site, and caudally (by 66%, 62%, and 52%, respectively) one day post-injury, whereas the infiltration of beneficial M2 macrophages was less affected (by 27%, 41%, and 16%). In addition, at the same time point, ATR visibly decreased caspase-3 cleavage in neurons, astrocytes, and oligodendrocytes. Six weeks post-SCI, ATR increased the expression of neurofilaments in the dorsolateral columns and Gap43-positive fibers in the lateral columns around the epicenter, and from day 30 to 42, significantly improved the motor activity of the hindlimbs. We suggest that early modulation of the inflammatory response via effects on the M1/M2 macrophages and the inhibition of caspase-3 expression could be crucial for the functional outcome.


Assuntos
Anti-Inflamatórios/administração & dosagem , Atorvastatina/administração & dosagem , Crescimento Neuronal , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Atorvastatina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/imunologia
11.
Exp Ther Med ; 15(1): 254-270, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399061

RESUMO

This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact). Hypothermia with cold (4°C) saline or Dulbecco's modified Eagle's medium (DMEM)/F12 culture medium was applied 30 min after SCI (for 5 h) via a perfusion chamber (flow 2 ml/min). After saline hypothermia, the 8N-SCI group achieved faster recovery of hind limb function and the ability to walk from one to three steps at nine weeks in comparison with non-treated animals. Such improvements were not observed in saline-treated animals subjected to more severe 15N-SCI or in the group treated with DMEM/F12 medium. It was demonstrated that the tissue preservation in the cranial and caudal segments immediately adjacent to the lesion, and neurofilament protection in the lateral columns may be essential for modulation of the key spinal microcircuits leading to a functional outcome. Tissue sparing observed only in the caudal sections, even though significant, was not sufficient for functional improvement in the 15N-SCI model.

12.
Spine J ; 15(6): 1366-78, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151131

RESUMO

BACKGROUND CONTEXT: The loss of descending control after spinal cord injury (SCI) and incessant stimulation of Ia monosynaptic pathway, carrying proprioceptive impulses from the muscles and tendons into the spinal cord, evoke exaggerated α-motoneuron activity leading to increased reflex response. Previous results from our laboratory have shown that Ia monosynaptic pathway is nitrergic. PURPOSE: The aim of this study was to find out whether nitric oxide produced by neuronal nitric oxide synthase (nNOS) plays a role in setting the excitability of α-motoneurons after thoracic spinal cord transection. STUDY DESIGN: We tested the hypothesis that the inhibition of nNOS in α-motoneurons after SCI could have a neuroprotective effect on reflex response. METHODS: Rats underwent spinal cord transection at Th10 level followed by 7, 10, and 14 days of survival. The animals were treated with Baclofen (a gamma aminobutyric acid B receptor agonist, 3 µg/two times per day/intrathecally) applied for 3 days from the seventh day after transection; N-nitro-l-arginine (NNLA) (nNOS blocator) applied for the first 3 days after injury (20 mg/kg per day, intramuscularly); NNLA and Baclofen; or NNLA (60 mg/kg/day, single dose) applied on the 10th day after transection. We detected the changes in the level of nNOS protein, nNOS messenger RNA, and nNOS immunoreactivity. To investigate the reflex response to heat-induced stimulus, tail-flick test was monitored in treated animals up to 16 days after SCI. RESULTS: Our data indicate that Baclofen therapy is more effective than the combined treatment with NNLA and Baclofen therapy. The single dose of NNLA (60 mg/kg) applied on the 10th day after SCI or Baclofen therapy reduced nNOS expression in α-motoneurons and suppressed symptoms of increased reflex activity. CONCLUSIONS: The results clearly show that increased nNOS expression in α-motoneurons after SCI may be pharmacologically modifiable with Baclofen or bolus dose of nNOS blocker.


Assuntos
Baclofeno/farmacologia , Inibidores Enzimáticos/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Neurônios Motores/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Percepção da Dor/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Animais , Temperatura Alta , Masculino , Neurônios Motores/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Percepção da Dor/fisiologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
13.
Acta Histochem ; 116(2): 344-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24074748

RESUMO

The interruption of supraspinal input to the spinal cord leads to motor dysfunction and the development of spasticity. Clinical studies have shown that Baclofen (a GABAB agonist), while effective in modulating spasticity is associated with side-effects and the development of tolerance. The aim of the present study was to assess if discontinued Baclofen treatment and its repeated application leads antispasticity effects, and whether such changes affect neuronal nitric oxide synthase (nNOS) in the brainstem, nNOS and parvalbumin (PV) in lumbar α-motoneurons and glial fibrillary acidic protein in the ventral horn of the spinal cord. Adult male Wistar rats were exposed to Th9 spinal cord transection. Baclofen (30mg/b.w.) diluted in drinking water, was administered for 6 days, starting at week 1 after injury and then repeated till week 4 after injury. The behavior of the animals was tested (tail-flick test, BBB locomotor score) from 1 to 8 weeks. Our results clearly indicate the role of nitric oxide, produced by nNOS in the initiation and the maintenance of spasticity states 1, 6 and 8 weeks after spinal trauma. A considerable decrease of nNOS staining after Baclofen treatment correlates with improvement of motor dysfunction. The findings also show that parvalbumin and astrocytes participate in the regulation of ion concentrations in the sub-acute phase after the injury.


Assuntos
Baclofeno/farmacologia , Baclofeno/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Imuno-Histoquímica , Região Lombossacral , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Wistar , Formação Reticular/efeitos dos fármacos , Reticulina/química , Transdução de Sinais/efeitos dos fármacos
14.
Stem Cell Res Ther ; 4(3): 57, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23710605

RESUMO

INTRODUCTION: Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. METHODS: Three-month-old female Sprague-Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. RESULTS: Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. CONCLUSIONS: Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.


Assuntos
Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Imunossupressores/farmacologia , Imageamento por Ressonância Magnética , Atividade Motora , Espasticidade Muscular/terapia , Células-Tronco Neurais/citologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Tacrolimo/farmacologia , Transplante Heterólogo
15.
PLoS One ; 7(8): e42614, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916141

RESUMO

BACKGROUND: Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the lumbar spinal cord of SOD1(G93A) rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1(G93A) rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1(G93A) animals. METHODS/PRINCIPAL FINDINGS: Presymptomatic SOD1(G93A) rats (60-65 days old) received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1(G93A) rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal) was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1(G93A) rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1(G93A) rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50-65%) loss of large caliber descending motor axons. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that in order to achieve a more clinically-adequate treatment, cell-replacement/gene therapy strategies will likely require both spinal and supraspinal targets.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Células-Tronco Neurais/transplante , Medula Espinal/cirurgia , Transplante de Células-Tronco , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Estimulação Elétrica , Potencial Evocado Motor , Humanos , Mutação , Ratos , Ratos Transgênicos , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Sinapses/fisiologia
16.
Life Sci ; 91(3-4): 77-82, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22771695

RESUMO

The secondary damage that follows central nervous system (CNS) injury is a target for neuroprotective agents aimed at tissue and function sparing. FK506, a clinically used immunosuppressant, acts neuroprotectively in rat models of brain and spinal cord injury and ischemia. Evidence of in vivo experimental studies highlights the neuroprotective role of FK506 by its direct impact on various cell populations within the CNS. The participation of FK506 in modulation of post-traumatic inflammatory processes is a further potential aspect involved in CNS neuroprotection. In this review we provide an overview of the current laboratory research focusing on the multiple effects of FK506 on neuroprotection following CNS injury.


Assuntos
Encéfalo/efeitos dos fármacos , Tacrolimo/administração & dosagem , Tacrolimo/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Inflamação , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico
17.
PLoS One ; 7(1): e30561, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291989

RESUMO

BACKGROUND: Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABA(B) receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. METHODS/PRINCIPAL FINDINGS: Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2-3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. CONCLUSIONS/SIGNIFICANCE: These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel and highly effective anti-spasticity treatment which is associated with minimal side effects and is restricted to GAD65-gene over-expressing spinal segments.


Assuntos
Agonistas GABAérgicos/uso terapêutico , Terapia Genética , Glutamato Descarboxilase/genética , Espasticidade Muscular/terapia , Coluna Vertebral/metabolismo , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Células Cultivadas , Terapia Combinada , Embrião de Mamíferos , Feminino , Agonistas GABAérgicos/administração & dosagem , Agonistas GABAérgicos/efeitos adversos , Regulação da Expressão Gênica/fisiologia , Terapia Genética/métodos , Glutamato Descarboxilase/administração & dosagem , Glutamato Descarboxilase/efeitos adversos , Injeções Espinhais , Masculino , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/genética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Ácidos Nipecóticos/administração & dosagem , Ácidos Nipecóticos/efeitos adversos , Ácidos Nipecóticos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/patologia , Suínos , Porco Miniatura , Tiagabina
18.
Acta Histochem ; 114(5): 518-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22000862

RESUMO

Using immunohistochemistry, we detected the expression of neuronal nitric oxide synthase (nNOS) in ventral medullary gigantocellular reticular nuclei and in the lumbosacral spinal cord 10 days after thoracic transection in experimental rabbits. We tried to determine whether neurons located below the site of injury are protected by the calcium binding protein parvalbumin (PV). Changes of nNOS immunoreactivity (IR) in spinal cord were correlated with the level of nNOS protein in dorsal and ventral horns. Ten days after transection, nNOS was upregulated predominantly in lateral gigantocellular nuclei. In the spinal cord, we revealed a significant increase of nNOS protein in the dorsal horn. This is consistent with a higher density of punctate and fiber-like immunostaining for nNOS in laminae III-IV and the up-regulation of nNOS-IR in neurons of the deep dorsal horn. After surgery, the perikarya of motoneurons remained nNOS immunonegative. Contrary to nNOS, the PV-IR was upregulated in α-motoneurons and small-sized neurons of the ventral horn. However, its expression was considerably reduced in neurons of the deep dorsal horn. The findings indicate that spinal transection affects nNOS and PV in different neuronal circuits.


Assuntos
Modelos Animais de Doenças , Neurônios Motores/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Parvalbuminas/análise , Núcleos da Rafe/enzimologia , Traumatismos da Medula Espinal/metabolismo , Animais , Imuno-Histoquímica , Masculino , Neurônios Motores/imunologia , Óxido Nítrico Sintase Tipo I/imunologia , Parvalbuminas/imunologia , Coelhos , Núcleos da Rafe/imunologia , Núcleos da Rafe/metabolismo , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia
19.
Acta Histochem ; 113(7): 723-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20950843

RESUMO

The immediate effects of whole body electromagnetic radiation (EMR) were used to study postnatal neurogenesis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of Wistar rats of both sexes. Newborn postnatal day 7 (P7) and young adult rats (P28) were exposed to pulsed electromagnetic fields (EMF) at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm(2) for 2 h. Post-irradiation changes were studied using immunohistochemical localization of Fos and NADPH-d. We found that short-duration exposure induces increased Fos immunoreactivity selectively in cells of the SVZ of P7 and P28 rats. There were no Fos positive cells visible within the RMS of irradiated rats. These findings indicate that some differences exist in prerequisites of proliferating cells between the SVZ and RMS regardless of the age of the rats. Short-duration exposure also caused praecox maturation of NADPH-d positive cells within the RMS of P7 rats. The NADPH-d positive cells appeared several days earlier than in age-matched controls, and their number and morphology showed characteristics of adult rats. On the other hand, in the young adult P28 rats, EMR induced morphological signs typical of early postnatal age. These findings indicate that EMR causes age-related changes in the production of nitric oxide (NO), which may lead to different courses of the proliferation cascade in newborn and young adult neurogenesis.


Assuntos
Di-Hidrolipoamida Desidrogenase/análise , Campos Eletromagnéticos , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/análise , Animais , Animais Recém-Nascidos , Proliferação de Células , Di-Hidrolipoamida Desidrogenase/metabolismo , Feminino , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Irradiação Corporal Total
20.
Cell Mol Neurobiol ; 29(6-7): 981-90, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19305951

RESUMO

It is well established that strong electromagnetic fields (EMFs) can give rise to acute health effects, such as burns, which can be effectively prevented by respecting exposure guidelines and regulations. Current concerns are instead directed toward the possibility that long-term exposure to weak EMF might have detrimental health effects due to some biological mechanism, to date unknown. (1) The possible risk due to pulsed EMF at frequency 2.45 GHz and mean power density 2.8 mW/cm(2) on rat postnatal neurogenesis was studied in relation to the animal's age, duration of the exposure dose, and post-irradiation survival. (2) Proliferating cells marker, BrdU, was used to map age- and dose-related immunohistochemical changes within the rostral migratory stream (RMS) after whole-body exposure of newborn (P7) and senescent (24 months) rats. (3) Two dose-related exposure patterns were performed to clarify the cumulative effect of EMF: short-term exposure dose, 2 days irradiation (4 h/day), versus long-term exposure dose, 3 days irradiation (8 h/day), both followed by acute (24 h) and chronic (1-4 weeks) post-irradiation survival. (4) We found that the EMF induces significant age- and dose-dependent changes in proliferating cell numbers within the RMS. Our results indicate that the concerns about the possible risk of EMF generated in connection with production, transmission, distribution, and the use of electrical equipment and communication sets are justified at least with regard to early postnatal neurogenesis.


Assuntos
Encéfalo/efeitos da radiação , Campos Eletromagnéticos , Ventrículos Laterais/efeitos da radiação , Neurogênese/efeitos da radiação , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina , Relação Dose-Resposta à Radiação , Imuno-Histoquímica , Ratos , Ratos Wistar , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...