Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684447

RESUMO

Microalgae are complex photosynthetic organisms found in marine and freshwater environments that produce valuable metabolites. Microalgae-derived metabolites have gained remarkable attention in different industrial biotechnological processes and pharmaceutical and cosmetic industries due to their multiple properties, including antioxidant, anti-aging, anti-cancer, phycoimmunomodulatory, anti-inflammatory, and antimicrobial activities. These properties are recognized as promising components for state-of-the-art cosmetics and cosmeceutical formulations. Efforts are being made to develop natural, non-toxic, and environmentally friendly products that replace synthetic products. This review summarizes some potential cosmeceutical applications of microalgae-derived biomolecules, their mechanisms of action, and extraction methods.


Assuntos
Produtos Biológicos , Cosmecêuticos , Cosméticos , Microalgas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Biotecnologia , Cosmecêuticos/farmacologia , Cosméticos/metabolismo , Microalgas/metabolismo
2.
Prostaglandins Other Lipid Mediat ; 160: 106631, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35272056

RESUMO

Obesity leads to chronic oxidative stress promoting the development of cardiovascular diseases including coronary artery disease and endothelial dysfunction. Increased reactive oxygen species production associated with obesity might lead to endothelial dysfunction through cyclooxygenase (COX) pathway. We evaluated arachidonic acid (AA)-dependent coronary vascular responses and explored COX metabolism in obese C57BL/6 mice. In response to arachidonic acid (AA), isolated hearts from obese mice showed increased vasoconstriction compared with control mice. Released thromboxane (TX) A2 during AA-induced vasoconstriction phase was increased in heart perfusates from obese mice. Indomethacin and 1-benzylimidazole, both reduced vasoconstriction response in control and obese mice. Vasoconstriction response to TXA2 mimetic analog U46619 was 2.7 higher in obese mice. Obesity increased COX-2, TXS and TX receptor protein expression as well as oxidative stress evaluated by nitrotyrosine and peroxynitrite levels, compared with control mice. Obese mice treated with FeTMPyP, a peroxynitrite scavenger, reversed all these parameters to control levels. These data suggest that alterations in COX pathway may be associated with increased generation of free radicals, including peroxynitrite, that result from the oxidative stress observed in obesity.


Assuntos
Tromboxanos , Vasoconstrição , Animais , Ácido Araquidônico/metabolismo , Ciclo-Oxigenase 2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Ácido Peroxinitroso/farmacologia , Tromboxano A2
3.
Int J Cardiol ; 221: 155-60, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27400314

RESUMO

BACKGROUND: Stochastic resonance is a phenomenon that allows a system to improve its capability to detect stimulus when a limited amount of noise is added to the stimuli. It has experimentally been shown that noise enhances the homeostatic function of the blood pressure regulatory system. This study aimed to investigate whether the noise can enhance the contractile response in the whole heart. METHODS: Experiments were conducted in isolated mouse hearts (0.040kg, n=8), a Langendorff heart preparation is used to obtain two variables of the contractile response contraction force and heart rate. The contractile response due to an electrical stimulation perturbed with Gaussian noise was recorded. RESULTS: The results show that the intensity of noise induced in the electrical stimuli has an effect on the electrical stimulation-contractile response coupling. With 10% noise induced, the bandwidth where the synchronization effect is presented was increased from (7-11Hz) to (6-12Hz), and the irregular dynamic threshold was changed to 13Hz. CONCLUSIONS: We find that the noise increases the synchronization bandwidth in the electrical stimulation-contractile response coupling. We have experimentally demonstrated the stochastic resonance in isolated mouse heart.


Assuntos
Estimulação Elétrica/métodos , Frequência Cardíaca/fisiologia , Contração Miocárdica/fisiologia , Animais , Camundongos , Modelos Cardiovasculares , Miocárdio , Ruído , Processos Estocásticos
4.
PLoS One ; 10(9): e0138609, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381906

RESUMO

Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.


Assuntos
Vasos Coronários/metabolismo , Endotélio Vascular/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Acetilcolina/farmacologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Dieta Hiperlipídica , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
5.
J Nephrol ; 27(3): 281-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24446346

RESUMO

BACKGROUND: Obesity is a serious health problem associated with the pathogenesis of various metabolic diseases. Nitric Oxide (NO) plays an important role in kidney function and altered NO levels have been associated with the pathogenesis of obesity. Therefore, we aimed to study whether an early stage of obesity contributes with progression of renal failure through further NO impairment. METHODS: Male C57BL/6 mice were fed with a high-fat diet (HFD) or a normal diet (ND) during 2 weeks. All mice underwent either sham surgery (sham) or 5/6 nephrectomy (Np). One group of HFD Np mice was treated with antioxidants plus L-arginine. Kidney damage parameters were assessed and eNOS metabolism was evaluated. RESULTS: Mice on a HFD increased body weight, eNOS protein and mRNA expression, and radical oxygen species (ROS). Urine nitrites excretion, urine volume, and plasma BH4 were decreased. In HFD mice, 5/6 Np further increased BH2 and urine protein concentration, ROS levels, and eNOS mRNA expression. The decrease in BH4 plasma levels and urine nitrites excretion was accentuated. NO synthesis stimulation with the antioxidants + L-arginine treatment prevented all these changes. CONCLUSIONS: The early changes in NO metabolism are associated with an early stage of obesity. This effect on NO potentiates kidney damage development.


Assuntos
Rim/metabolismo , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Insuficiência Renal/metabolismo , Animais , Antioxidantes/farmacologia , Biomarcadores/sangue , Biomarcadores/urina , Biopterinas/análogos & derivados , Biopterinas/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Rim/cirurgia , Masculino , Camundongos Endogâmicos C57BL , Nefrectomia , Óxido Nítrico/urina , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/etiologia , Obesidade/genética , Estresse Oxidativo , Proteinúria/etiologia , Proteinúria/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal/etiologia , Insuficiência Renal/genética , Insuficiência Renal/prevenção & controle , Fatores de Risco , Aumento de Peso
6.
Prostaglandins Other Lipid Mediat ; 98(3-4): 86-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22119250

RESUMO

Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Rim/enzimologia , Rim/fisiopatologia , Insuficiência Renal/enzimologia , Animais , Humanos , Rim/patologia , Insuficiência Renal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...