Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 19(1): 147, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262257

RESUMO

BACKGROUND: The presence and activity of CRISPR-Cas defense systems is a hallmark of many prokaryotic microorganisms. Here, the distribution of sequences related to the highly iterated palindrome 1 (HIP1) element and the DNA methylation of CGATCG motifs embedded within HIP1 as a vital part of the CRISPR1 repeat sequence was analyzed in the cyanobacterium Synechocystis sp. PCC 6803. Previously suggested functions of HIP1 include organization of chromosomal structure, DNA recombination or gene regulation, all of which could be relevant in CRISPR-Cas functionality. RESULTS: The CRISPR1 repeat-spacer array contains more than 50 CGATCG elements that are double-methylated (5mCG6mATCG) by the enzymes M.Ssp6803I and M.Ssp6803III. Hence, more than 200 possible methylation events cluster over a stretch of 3600 bp of double-stranded DNA. Bisulfite sequencing showed that these motifs were highly methylated at the m5CGATCG positions whereas specific motifs within the CRISPR1 cas genes were hypomethylated suggesting a lowered accessibility for the DNA methylase to these regions. Assays for conjugation and CRISPR1-mediated DNA interference revealed a 50% drop in conjugation efficiency in the mutant lacking the 5mC methylation of CGATCG motifs, while the highly efficient DNA interference activity was not affected by the lack of m5CGATCG DNA-methylation, nor was the capability to differentiate between self and non-self targets based on the protospacer adjacent motifs (PAMs) GTA and GTC versus the non-PAM AGC. A third DNA methylation mediated by M.Ssp6803II modifies the first cytosine in the motif GGCC yielding GGm4CC. We found a remarkable absence of GGCC motifs and hence the corresponding methylation over an 11 kb stretch encompassing all the cas genes involved in interference and crRNA maturation but not adaptation of the CRISPR1 system. CONCLUSIONS: The lack of GGCC tetranucleotides along the CRISPR1 interference and maturation genes supports the reported hybrid character of subtype I-D CRISPR-Cas systems. We report tight and very high 5mC methylation of the CRISPR1 repeat sequences. Nevertheless, cells lacking the 5mC methylation activity were unaffected in their CRISPR1-mediated interference response but the efficiency of conjugation was reduced by 50%. These results point to an unknown role of m5CGATCG DNA-methylation marks in conjugation and DNA transformation.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metilação de DNA , Synechocystis/genética , DNA , DNA (Citosina-5-)-Metiltransferases , DNA Bacteriano/genética , Motivos de Nucleotídeos , Recombinação Genética , Análise de Sequência de DNA
2.
Front Microbiol ; 10: 1233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231331

RESUMO

DNA methylation plays a crucial role for gene regulation among eukaryotes, but its regulatory function is less documented in bacteria. In the cyanobacterium Synechocystis sp. PCC 6803 five DNA methyltransferases have been identified. Among them, M.Ssp6803II is responsible for the specific methylation of the first cytosine in the frequently occurring motif GGCC, leading to N4-methylcytosine (GGm4CC). The mutation of the corresponding gene sll0729 led to lowered chlorophyll/phycocyanin ratio and slower growth. Transcriptomics only showed altered expression of sll0470 and sll1526, two genes encoding hypothetical proteins. Moreover, prolonged cultivation revealed instability of the initially obtained phenotype. Colonies with normal pigmentation and wild-type-like growth regularly appeared on agar plates. These colonies represent suppressor mutants, because the sll0729 gene was still completely inactivated and the GGCC sites remained unmethylated. The suppressor strains showed smaller cell size, lowered DNA content per cell, and decreased tolerance against UV compared to wild type. Promoter assays revealed that the transcription of the sll0470 gene was still stimulated in the suppressor clones. Proteomics identified decreased levels of DNA topoisomerase 4 subunit A in suppressor cells. Collectively, these results indicate that GGm4CC methylation is involved in the regulation of gene expression, in the fine-tuning of DNA replication, and DNA repair mechanisms.

3.
DNA Res ; 25(4): 343-352, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444255

RESUMO

DNA methylation in bacteria is important for defense against foreign DNA, but is also involved in DNA repair, replication, chromosome partitioning, and regulatory processes. Thus, characterization of the underlying DNA methyltransferases in genetically tractable bacteria is of paramount importance. Here, we characterized the methylome and orphan methyltransferases in the model cyanobacterium Synechocystis sp. PCC 6803. Single molecule real-time (SMRT) sequencing revealed four DNA methylation recognition sequences in addition to the previously known motif m5CGATCG, which is recognized by M.Ssp6803I. For three of the new recognition sequences, we identified the responsible methyltransferases. M.Ssp6803II, encoded by the sll0729 gene, modifies GGm4CC, M.Ssp6803III, encoded by slr1803, represents the cyanobacterial dam-like methyltransferase modifying Gm6ATC, and M.Ssp6803V, encoded by slr6095 on plasmid pSYSX, transfers methyl groups to the bipartite motif GGm6AN7TTGG/CCAm6AN7TCC. The remaining methylation recognition sequence GAm6AGGC is probably recognized by methyltransferase M.Ssp6803IV encoded by slr6050. M.Ssp6803III and M.Ssp6803IV were essential for the viability of Synechocystis, while the strains lacking M.Ssp6803I and M.Ssp6803V showed growth similar to the wild type. In contrast, growth was strongly diminished of the Δsll0729 mutant lacking M.Ssp6803II. These data provide the basis for systematic studies on the molecular mechanisms impacted by these methyltransferases.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Synechocystis/enzimologia , Proteínas de Bactérias/metabolismo , Análise de Sequência de DNA , Synechocystis/metabolismo
4.
PLoS One ; 10(4): e0125324, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927230

RESUMO

Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.


Assuntos
Hidrogênio/metabolismo , Volvox/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Perfilação da Expressão Gênica , Ordem dos Genes , Hidrogenase/química , Hidrogenase/genética , Hidrogenase/metabolismo , Dados de Sequência Molecular , Família Multigênica , Alinhamento de Sequência , Volvox/genética
5.
Eur J Immunol ; 44(5): 1285-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24470136

RESUMO

Suppressory B-cell function controls immune responses and is mainly dependent on IL-10 secretion. Pharmacological manipulation of B-cell-specific IL-10 synthesis could, thus, be therapeutically useful in B-cell chronic lymphocytic leukemia, transplantation, autoimmunity and sepsis. TLR are thought to play a protagonistic role in the formation of IL-10-secreting B cells. The aim of the study was to identify the molecular events selectively driving IL-10 production in TLR9-stimulated human B cells. Our data highlight the selectivity of calcineurin inhibitors in blocking TLR9-induced B-cell-derived IL-10 transcription and secretion, while IL-6 transcription and release, B-cell proliferation, and differentiation remain unaffected. Nevertheless, TLR9-induced IL-10 production was found to be independent of calcineurin phosphatase activity and was even negatively regulated by NFAT. In contrast to TLR9-induced IL-6, IL-10 secretion was highly sensitive to targeting of spleen tyrosine kinase (syk) and Bruton's tyrosine kinase. Further analyses demonstrated increased phosphorylation of Ca(2+) /calmodulin kinase II (CaMKII) in TLR9-stimulated B cells and selective reduction of TLR9-induced secretion of IL-10 upon treatment with CaMKII inhibitors, with negligible impact on IL-6 levels. Altogether, our results identify calcineurin antagonists as selective inhibitors of IL-10 transcription and syk/Bruton´s tyrosine kinase-induced Ca(2+) /calmodulin- and CaMKII-dependent signaling as a pathway regulating the release of TLR9-induced B-cell-derived IL-10.


Assuntos
Subpopulações de Linfócitos B/imunologia , Sinalização do Cálcio/fisiologia , Interleucina-10/imunologia , Receptor Toll-Like 9/imunologia , Transcrição Gênica/fisiologia , Tirosina Quinase da Agamaglobulinemia , Subpopulações de Linfócitos B/citologia , Calcineurina/imunologia , Calcineurina/metabolismo , Inibidores de Calcineurina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/imunologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-10/metabolismo , Interleucina-6/biossíntese , Interleucina-6/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Quinase Syk
6.
Appl Environ Microbiol ; 78(24): 8579-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23023750

RESUMO

H(2) generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H(2) from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O(2) sensitive. Certain filamentous cyanobacteria protect nitrogenase from O(2) by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter P(hetN). Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O(2).


Assuntos
Anabaena/genética , Hidrogenase/genética , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Shewanella/enzimologia , Aerobiose , Expressão Gênica , Hidrogenase/isolamento & purificação , Proteínas Ferro-Enxofre/isolamento & purificação , Óperon , Regiões Promotoras Genéticas , Proteínas Recombinantes/isolamento & purificação , Shewanella/genética
7.
J Biol Chem ; 286(44): 38341-38347, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21900241

RESUMO

[FeFe]-Hydrogenases are complex metalloproteins that catalyze the reversible reduction of protons to molecular hydrogen utilizing a unique diiron subcluster bridged to a [4Fe4S] subcluster. Extensive studies have concentrated on the nature and catalytic activity of the active site, yet relatively little information is available concerning the mechanism of proton transport that is required for this activity. Previously, structural characterization of [FeFe]-hydrogenase from Clostridium pasteurianum indicated a potential proton transport pathway involving four residues (Cys-299, Glu-279, Ser-319, and Glu-282) that connect the active site to the enzyme surface. Here, we demonstrate that substitution of any of these residues resulted in a drastic reduction in hydrogenase activity relative to the native enzyme, supporting the importance of these residues in catalysis. Inhibition studies of native and amino acid-substituted enzymes revealed that Zn(2+) specifically blocked proton transfer by binding to Glu-282, confirming the role of this residue in the identified pathway. In addition, all four of these residues are strictly conserved, suggesting that they may form a proton transport pathway that is common to all [FeFe]-hydrogenases.


Assuntos
Clostridium/enzimologia , Hidrogenase/química , Ferro/química , Sequência de Aminoácidos , Transporte Biológico , Catálise , Ácido Glutâmico/química , Proteínas Ferro-Enxofre/química , Cinética , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Prótons , Homologia de Sequência de Aminoácidos , Zinco/química
8.
Plant Physiol ; 154(4): 1737-52, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935180

RESUMO

Like many microalgae, Chlamydomonas reinhardtii forms lipid droplets rich in triacylglycerols when nutrient deprived. To begin studying the mechanisms underlying this process, nitrogen (N) deprivation was used to induce triacylglycerol accumulation and changes in developmental programs such as gametogenesis. Comparative global analysis of transcripts under induced and noninduced conditions was applied as a first approach to studying molecular changes that promote or accompany triacylglycerol accumulation in cells encountering a new nutrient environment. Towards this goal, high-throughput sequencing technology was employed to generate large numbers of expressed sequence tags of eight biologically independent libraries, four for each condition, N replete and N deprived, allowing a statistically sound comparison of expression levels under the two tested conditions. As expected, N deprivation activated a subset of control genes involved in gametogenesis while down-regulating protein biosynthesis. Genes for components of photosynthesis were also down-regulated, with the exception of the PSBS gene. N deprivation led to a marked redirection of metabolism: the primary carbon source, acetate, was no longer converted to cell building blocks by the glyoxylate cycle and gluconeogenesis but funneled directly into fatty acid biosynthesis. Additional fatty acids may be produced by membrane remodeling, a process that is suggested by the changes observed in transcript abundance of putative lipase genes. Inferences on metabolism based on transcriptional analysis are indirect, but biochemical experiments supported some of these deductions. The data provided here represent a rich source for the exploration of the mechanism of oil accumulation in microalgae.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Nitrogênio/metabolismo , RNA Mensageiro/genética , Sequência de Bases , Northern Blotting , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Primers do DNA , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Metabolismo dos Lipídeos , Fotossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Cell ; 20(4): 1152-68, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18398052

RESUMO

Volatile secondary metabolites emitted by plants contribute to plant-plant, plant-fungus, and plant-insect interactions. The C(16)-homoterpene TMTT (for 4,8,12-trimethyltrideca-1,3,7,11-tetraene) is emitted after herbivore attack by a wide variety of plant species, including Arabidopsis thaliana, and is assumed to play a role in attracting predators or parasitoids of herbivores. TMTT has been suggested to be formed as a degradation product of the diterpene alcohol (E,E)-geranyllinalool. Here, we report the identification of Terpene Synthase 04 (TPS04; At1g61120) as a geranyllinalool synthase (GES). Recombinant TPS04/GES protein expressed in Escherichia coli catalyzes the formation of (E,E)-geranyllinalool from the substrate geranylgeranyl diphosphate. Transgenic Arabidopsis lines carrying T-DNA insertions in the TPS04 locus are deficient in (E,E)-geranyllinalool and TMTT synthesis, a phenotype that can be complemented by expressing the GES gene under the control of a heterologous promoter. GES transcription is upregulated under conditions that induce (E,E)-geranyllinalool and TMTT synthesis, including infestation of plants with larvae of the moth Plutella xylostella and treatment with the fungal peptide alamethicin or the octadecanoid mimic coronalon. Induction requires jasmonic acid but is independent from salicylic acid or ethylene. This study paves the ground to address the contribution of TMTT in ecological interactions and to elucidate the signaling network that regulates TMTT synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Insetos/metabolismo , Ligases/metabolismo , Terpenos/metabolismo , Animais , Catálise , Dados de Sequência Molecular , Volatilização
10.
Proc Natl Acad Sci U S A ; 99(3): 1158-63, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11818558

RESUMO

Isopentenyl diphosphate and dimethylallyl diphosphate serve as the universal precursors for the biosynthesis of terpenes. Although their biosynthesis by means of mevalonate has been studied in detail, a second biosynthetic pathway for their formation by means of 1-deoxy-D-xylulose 5-phosphate has been discovered only recently in plants and certain eubacteria. Earlier in vivo experiments with recombinant Escherichia coli strains showed that exogenous 1-deoxy-D-xylulose can be converted into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate by the consecutive action of enzymes specified by the xylB and ispCDEFG genes. This article describes the transformation of exogenous [U-(13)C(5)]1-deoxy-D-xylulose into a 5:1 mixture of [U-(13)C(5)]isopentenyl diphosphate and [U-(13)C(5)]dimethylallyl diphosphate by an E. coli strain engineered for the expression of the ispH (lytB) gene in addition to recombinant xylB and ispCDEFG genes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Ácido Mevalônico/metabolismo , Óperon , Oxirredutases , Terpenos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Enterobacteriaceae/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Oligodesoxirribonucleotídeos/química , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...