Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302450

RESUMO

To further the ability to manipulate the properties of open-shell molecules, logical and incremental modifications to molecular structure are key steps that provide fine-tuning of established diradicaloid scaffolds. We report the synthesis of an electronically "pure" diradicaloid based on a 2,6-anthroquinoidal core where the once necessary ethynyl "wings" are removed. Through the simplification of the overall electronic structure, the singlet-triplet energy gap increases by 0.3-0.4 kcal mol-1 in the reported diradicaloids while avoiding significant disruption to their optoelectronic properties.

2.
Chem Soc Rev ; 53(19): 9490-9559, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39171560

RESUMO

Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.

3.
Inorg Chem ; 63(34): 15619-15633, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39116010

RESUMO

Three cyano-coordinated cobalt porphyrin dimers were synthesized and thoroughly characterized. The X-ray structure of the complexes reveals that cyanide binds in a terminal fashion in both the anti and trans isomers of ethane- and ethylene-bridged cobalt porphyrin dimers, while in the cis ethylene-bridged dimer, cyanides bind in both terminal and bridging modes. The nonconjugated ethane-bridged complex stabilizes exclusively a diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 both in the solid and in solution. In contrast, the complexes with the conjugated ethylene-bridge contain signatures of both paramagnetic ligand-centered oxidation of the type CoII(por•+)(CN)2 and diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 with the metal-centered oxidized species being the major component in the solid state as observed in XPS, while the ligand-centered oxidized species are present in a significant amount in solution. 1H NMR spectrum in solution displays two set of signals corresponding to the simultaneous presence of both the diamagnetic and paramagnetic species. EPR and magnetic investigation reveal that there is a moderate ferromagnetic coupling between the unpaired electrons of the low-spin CoII center and the porphyrin π-cation radical in CoII(por•+)(CN)2 species as well as an antiferromagnetic coupling between the two CoII(por•+) units through the ethylene and CN bridges.

4.
Chem Sci ; 15(26): 10101-10109, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966384

RESUMO

Two families of difluorenoheterole diradicaloids were synthesized, featuring isomeric ring systems with distinct conjugation topologies. The two types of difluorenoheteroles contain, respectively, a Chichibabin-like motif (CH) and a newly introduced heteroatom-linked triphenylmethyl dyad (TD-X). Combined experimental and theoretical investigations show that the TD-X systems have reduced quinoidal character but the interaction between formal spin centers is sufficiently strong to ensure a singlet ground state. The singlet-triplet energy gaps in the TD-X difluorenoheteroles are strongly affected by the heterocyclic ring, with values of -4.3 and -0.7 kcal mol-1 determined for the pyrrole- and thiophene-containing analogues, respectively. In cyclic voltammetry experiments, the TD-X systems show diminished energy gaps and superior reversibility in comparison with their CH counterparts. The radical anions and cations obtained from these diradicaloids show extremely red-shifted bands, occasionally with λ max > 3500 nm. Computational studies show that some of these ions adopt distonic structures and may be characterized as class-II mixed-valence species.

5.
Dalton Trans ; 53(32): 13515-13528, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39072528

RESUMO

A new Mannich base (2-(4-(2-hydroxy-3-methoxy-5-methylbenzyl)-piperazin-1-yl)methyl)-6-methoxy-4-ethylphenol (H2L) and its tetranuclear NiII complex [Ni4L2(µ1,1-Cl)2(H2O)4]Cl2 (compound 1) are characterised using single-crystal X-ray diffraction measurements. Compound 1 contains four different NiII centres in a rhombus-like structure. Two Ni atoms (Ni1 and Ni2) have a NiN2O4 coordination sphere, while the other two (Ni3 and Ni4) have a NiO4Cl2 coordination environment and Ni-Cl-Ni bridges connect them. Ni1 and Ni2 are linked to Ni3 and Ni4 by phenoxide bridges. Variable temperature magnetic susceptibility measurements of 1 indicate the presence of alternating antiferromagnetic coupling (J1 = -6.6(1) cm-1) through the phenoxide bridge along the sides of the rhombus and ferromagnetic coupling (J2 = 8.4(1) cm-1) through the double Cl bridge along the short diagonal of the rhombus with a zero-field splitting of |D| = 2.7(1) cm-1. Compound 1 shows oxidase (catecholase-like and phenoxazinone synthase-like) activity. The oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) gives 3,5-di-tert-butylquinone (3,5-DTBQ) and H2O2 and the oxidation of o-aminophenol (OAP) produces 2-aminophenoxazin-3-one (APX) and H2O with turnover numbers of 28.32 and 17.52 h-1, respectively, under aerobic conditions. A mechanism for the oxidase activity catalysed by compound 1 is proposed in line with ESI-mass spectrometry, EPR spectroscopy, and electrochemical data. The reaction involves the cleavage of the tetranuclear Ni4-core to form a mononuclear NiII complex in the presence of the substrate (3,5-DTBC/OAP). This NiII complex is reduced to NiI with the concomitant oxidation of the substrate (3,5-DTBQ/APX). Formation of a radical intermediate is confirmed using EPR. In the catecholase-like activity, O2 is reduced to H2O2 while in the phenoxazinone synthase-like activity O2 produces H2O. Compound 1 participated in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a strongly basic medium with an onset potential of 418 mV and a Tafel slope of 121 mV dec-1 for OER and an onset potential of 477 mV and Tafel slope of 146 mV dec-1 for HER.

6.
RSC Adv ; 14(16): 11557-11569, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601708

RESUMO

Here we present the magnetic properties of two cobalt complexes formulated as: [Co(SCN)2(L)2] (1) and (H2L)2[Co(SCN)4]·H2O (2) (L = 1-(2-pyrimidyl)piperazine). The two compounds contain isolated tetrahedral CoII complexes with important intermolecular interactions that lead to the presence of a canted antiferromagnetic order below 11.5 and 10.0 K, with coercive fields at 2 K of 38 and 68 mT, respectively. Theoretical calculations have been used to explain this behaviour. Hirshfeld surface analysis shows the presence of strong intermolecular interactions in both compounds. The crystal geometries were used for geometry optimization using the DFT method. From the topological properties, electrostatic potential maps and molecular orbital analysis, information about the noncovalent interaction and chemical reactivity was obtained.

7.
Inorg Chem ; 63(14): 6161-6172, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526851

RESUMO

We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(µ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four µ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 µmol H2 h-1 mol-1.

8.
Chemistry ; 30(28): e202400410, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483106

RESUMO

We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] ⋅ 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] ⋅ 4fma ⋅ 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.

9.
Cryst Growth Des ; 24(5): 2235-2265, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38463618

RESUMO

Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.

10.
Inorg Chem ; 63(12): 5423-5431, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38483819

RESUMO

A series of two-electron-oxidized cobalt porphyrin dimers have been synthesized upon controlled oxidations using halogens. Rather unexpectedly, X-ray structures of two of these complexes contain two structurally different low-spin molecules in the same asymmetric unit of their unit cells: one is the metal-centered oxidized diamagnetic entity of the type CoIII(por), while the other one is the ligand-centered oxidized paramagnetic entity of the type CoII(por•+). Spectroscopic, magnetic, and DFT investigations confirmed the coexistence of the two very different electronic structures both in the solid and solution phases and also revealed a ferromagnetic spin coupling between Co(II) and porphyrin π-cation radicals and a weak antiferromagnetic coupling between the π-cation radicals of two macrocycles via the bridge in the paramagnetic complex.

11.
J Colloid Interface Sci ; 659: 312-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176240

RESUMO

Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.

12.
Inorg Chem ; 63(1): 860-869, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38141027

RESUMO

In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 µM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.

13.
Chem Sci ; 14(46): 13468-13474, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033889

RESUMO

A new diradical based on diindenocarbazole or difluorenopyrrole was synthesized and experimentally characterized by optical, electrochemical, and magnetic techniques, as well as quantum chemical calculations. The isomerism of these structures tunes the diradical character and the associated properties, representing a unique case of such important modulation. A full study of the electronic structure was carried out considering the perturbative interactions between different canonical forms as well as the anti-aromatic character of the molecular cores. Such a study reveals how we can tune diradical character simply by reorganizing the bonding patterns at constant chemical costs (composition).

14.
Nat Chem ; 15(11): 1541-1548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783726

RESUMO

Electronic and steric effects are known to greatly influence the structure, characteristics and reactivity of organic compounds. A typical π bond is weakened by oxidation (corresponding to the removal of electrons from bonding orbitals), by reduction (through addition of electrons to antibonding orbitals) and by unpairing of the bonding electrons, such as in the triplet state. Here we describe tetrafluorenofulvalene (TFF), a twisted, open-shell alkene for which these general rules do not hold. Through the synthesis, experimental characterization and computational analysis of its charged species spanning seven redox states, the central alkene bond in TFF is shown to become substantially stronger in the tri- and tetraanion, generated by chemical reduction. Furthermore, although its triplet state contains a weaker alkene bond than the singlet, in the quintet state its bond order increases substantially, yielding a flatter structure. This behaviour originates from the doubly bifurcated topology of the underlying spin system and can be rationalized by the balancing effects of benzenoid aromaticity and spin pairing.

15.
Cryst Growth Des ; 23(2): 1269-1280, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529082

RESUMO

We exploit the high versatility of the solvent ethylene glycol (eg = CH2OH-CH2OH) acting as a ligand with three different coordination modes: terminal (κO), chelate (κ2O,O'), and bridge (1κO,2κO') to prepare a novel family of six different coordination polymers with DyIII and three different anilato ligands (3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion = C6O4X22-, with X = H, Cl, and Br). With the X = H derivative (dhbq2-), we have prepared [Dy2(dhbq)3(eg)2(µ-eg)]·4eg·2H2O (1), a 3D diamond-like network with a chelate and bridging eg molecules. With the X = Cl derivative (chloranilato), we have prepared [Dy2(C6O4Cl2)3(eg)4]·2eg·H2O (2) and [Dy2(C6O4Cl2)3(µ-eg)(H2O)4]·2eg·7H2O (3). Compound 2 has a 2D (6,3)-gon brick-wall lattice and contains a chelate and a terminal eg molecule. Compound 3 has a 3D diamond-like topology as 1, although now the chelate eg has been replaced by two water molecules. Finally, with the X = Br derivative (bromanilato), we have obtained [Dy2(C6O4Br2)3(eg)2(CH3OH)2]·2eg·4CH3OH (4), [Dy2(C6O4Br2)3(eg)4]·4eg (5), and [Dy2(C6O4Br2)3(eg)3(H2O)]·2eg·H2O (6). Compound 4 has a 2D (6,3)-gon herringbone topology and contains a chelate eg and a MeOH molecule. Compounds 5 and 6 have a 2D (6,3)-gon brick-wall topology with a chelate and a terminal eg molecules (in 5 and in one of the two independent Dy centers of 6). The other Dy center in 6 has a chelate eg and a water molecule. All the compounds show slow relaxation of the magnetization at low temperatures (in compounds 1, 2, and 5 with no applied DC field). The magnetization of compounds 1-6 relaxes through Orbach and direct mechanisms when a DC field is applied and through an Orbach and/or quantum tunneling mechanism when no DC field is applied.

16.
Angew Chem Int Ed Engl ; 62(38): e202309238, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37452009

RESUMO

Diradicaloid helicenes constructed formally by non-benzenoid double π-extension of phenanthrene were synthesized by a common strategy involving double electrophilic benzannulation. Steric effects in the second benzannulation step led to considerable structural diversity among the products, yielding a symmetrical dinor[7]helicene 1 and two isomeric unsymmetrical double helicenes 2 and 3, containing a nor[5]helicene and [4]helicene fragment, respectively, in addition to a common nor[6]helicene motif. Geometries, configurational dynamics, and electronic structure of these helicenes were analyzed using solid-state structures, spectroscopic methods, and computational analyses. The open-shell character of the singlet states of these helicenes increases in the order 3<1<2, with strongly varying diradicaloid indexes and singlet-triplet gaps. Compounds 1-3 displayed narrow optical gaps of 0.79-1.25 eV, resulting in significant absorption in the near infrared (NIR) region. They also exhibit reversible redox chemistry, each of them yielding stable radical cations, radical anions, and dianions, in some cases possessing intense NIR absorptions extending beyond 2500 nm.

17.
Inorg Chem ; 61(47): 18907-18922, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36378825

RESUMO

The optical, structural, and magnetic properties of iron(II,III) sandwich complexes, Fe(Tp')2n+ (Tp' = bis(3,5-dimethylpyrazolyl)benzotriazolylborate), are described. The intensely colored FeII(Tp')2 (orange) and FeIII(Tp')2+ (purple) show strong MLCT bands. Geometric isomerism for M(Tp')2 is established crystallographically in the racemate of chiral cis-Fe(Tp')2. For the first time, paramagnetic 11B NMR describes solution-phase low-spin (LS, S = 0) to high-spin (HS, S = 2) crossover behavior in Fe(Tp')2. Thermochemical parameters for solution-phase SCO of Fe(Tp')2 demonstrate the endothermic LS to HS conversion and entropic preference of the HS state. Entropy changes for both Fe(Tp')2 isomers are significantly larger than for the majority of iron scorpionate SCO systems. Solid-state magnetic and thermochemical measurements show cis-Fe(Tp')2 to be thermally stable up to 520 K, allowing experimental investigation of a solid-state SCO magnetic hysteresis of over 45 K. A large solution vs solid-state SCO difference was observed: cis-Fe(Tp')2 shows Tc ≈ 270 K (solution) and Tc ≈ 385 K (solid), with the remarkably wide ΔTc ≈ 115 K; trans-Fe(Tp')2 shows Tc ≈ 278 K (solution) and Tc ≈ 372 K (solid). Solid-state Tc values are among the highest seen for iron(II) molecular systems. The large solution/solid ΔTc difference is explained by "anchoring" intermolecular interactions in the solid state that prevent thermal expansion of the LS iron(II) coordination sphere in its transition to the HS state. DFT calculations, validated against LS cis-Fe(Tp')2 crystallography and LS to HS SCO thermochemical parameters, demonstrate the role the benzotriazole rings play in its structural and optical properties. The Lewis basicity of M(Tp')2 is shown with the structural characterization of the air-stable tin(II) adduct [cis-Fe(Tp')2-SnCl2]; tin(II) coordination does not alter the iron(II) spin state. The Tp' chelate adds functionality (asymmetry, chirality, chemical reactivity) to the array of iron SCO materials for potential incorporation into nanoscale magnetic switches and spintronic devices.

18.
Inorg Chem ; 61(30): 11830-11836, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852958

RESUMO

In situ molecular transformation under hydrothermal conditions is a feasible method to introduce distinct organic ligands and suppress competitive reactions between different synthons. However, this strategy has not yet been explored for the preparation of polyoxometalate (POM)-encapsulated metal-organic frameworks (MOFs). In this work, we designed and prepared a new compound, [Co2(3,3'-bpy)(3,5'-bpp)(4,3'-bpy)](H2O)3[SiW12O40] (1) (4,3'-bpy = 4,3'-dipyridine, 3,5'-bpp = 3,5'-bis(pyrid-4-yl)pyridine, and 3,3'-bpy = 3,3'-bis(pyrid-4-yl) dipyridine), via an in situ ligand synthesis route. The compound shows a novel POM-encapsulated MOF structure with two pairs of left- and right-handed double helixes. These left- and right-handed helical chains further lead to triangular and rhombus-like channels, respectively. Moreover, the as-synthesized title compound shows superior electrocatalytic activity toward the hydrogen evolution reaction (HER) in 1 M KOH aqueous solution with a low overpotential and Tafel slope of 92 mV and 92.1 mV dec-1, respectively, under a current density of 10 cm-2. Also, the compound exhibits a high activity for the photocatalytic degradation of the dye rhodamine B. The excellent performance of the compound may be attributed to the synergistic effect between W and Co elements and the presence of encapsulated POMs. The title compound proves that it is possible to prepare multifunctional MOFs with POMs and transition metals showing HER activity and dye degradation activity.

19.
Angew Chem Int Ed Engl ; 61(33): e202206680, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696258

RESUMO

Four difluorenoheteroles having a central quinoidal core with the heteroring varying as furan, thiophene, its dioxide derivative and pyrrole have shown to be medium character diradicals. Solid-state structures, optical, photophysical, magnetic, and electrochemical properties have been discussed in terms of diradical character, variation of aromatic character and captodative effects (electron affinity). Organic field-effect transistors (OFETs) have been prepared, showing balanced hole and electron mobilities of the order of 10-3  cm2 V-1 s-1 or ambipolar charge transport which is first inferred from their redox amphoterism. Quantum chemical calculations show that the electrical behavior is originated from the medium diradical character which produces similar reorganization energies for hole and electron transports. The vision of a diradical as simultaneously bearing pseudo-hole and pseudo-electron defects might justify the reduced values of reorganization energies for both regimes. Structure-function relationships between diradical and ambipolar electrical behavior are revealed.

20.
Small ; 18(29): e2202087, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35729064

RESUMO

To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA