Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406192

RESUMO

Recent advances in long read technologies not only enable large consortia to aim to sequence all eukaryotes on Earth, but they also allow individual laboratories to sequence their species of interest with relatively low investment. Long read technologies embody the promise of overcoming scaffolding problems associated with repeats and low complexity sequences, but the number of contigs often far exceeds the number of chromosomes and they may contain many insertion and deletion errors around homopolymer tracts. To overcome these issues, we have implemented the ILRA pipeline to correct long read-based assemblies. Contigs are first reordered, renamed, merged, circularized, or filtered if erroneous or contaminated. Illumina short reads are used subsequently to correct homopolymer errors. We successfully tested our approach by improving the genome sequences of Homo sapiens, Trypanosoma brucei, and Leptosphaeria spp., and by generating four novel Plasmodium falciparum assemblies from field samples. We found that correcting homopolymer tracts reduced the number of genes incorrectly annotated as pseudogenes, but an iterative approach seems to be required to correct more sequencing errors. In summary, we describe and benchmark the performance of our new tool, which improved the quality of novel long read assemblies up to 1 Gbp. The pipeline is available at GitHub: https://github.com/ThomasDOtto/ILRA.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Pseudogenes , Cromossomos
2.
Front Cell Infect Microbiol ; 13: 1146030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305421

RESUMO

Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.


Assuntos
Culicidae , Malária , Humanos , Animais , Mosquitos Vetores , Meio Ambiente , Tecnologia
3.
Front Immunol ; 14: 1120298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993979

RESUMO

The co-occurrence and the similarities between malaria and COVID-19 diseases raise the question of whether SARS-CoV-2 is capable of infecting red blood cells and, if so, whether these cells represent a competent niche for the virus. In this study, we first tested whether CD147 functions as an alternative receptor of SARS-CoV-2 to infect host cells. Our results show that transient expression of ACE2 but not CD147 in HEK293T allows SARS-CoV-2 pseudoviruses entry and infection. Secondly, using a SARS-CoV-2 wild type virus isolate we tested whether the new coronavirus could bind and enter erythrocytes. Here, we report that 10,94% of red blood cells had SARS-CoV-2 bound to the membrane or inside the cell. Finally, we hypothesized that the presence of the malaria parasite, Plasmodium falciparum, could make erythrocytes more vulnerable to SARS-CoV-2 infection due to red blood cell membrane remodelling. However, we found a low coinfection rate (9,13%), suggesting that P. falciparum would not facilitate the entry of SARS-CoV-2 virus into malaria-infected erythrocytes. Besides, the presence of SARS-CoV-2 in a P. falciparum blood culture did not affect the survival or growth rate of the malaria parasite. Our results are significant because they do not support the role of CD147 in SARS-CoV-2 infection, and indicate, that mature erythrocytes would not be an important reservoir for the virus in our body, although they can be transiently infected.


Assuntos
COVID-19 , Coinfecção , Malária Falciparum , Humanos , SARS-CoV-2 , Plasmodium falciparum , Células HEK293 , Malária Falciparum/parasitologia , Eritrócitos
4.
Sci Rep ; 13(1): 4793, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959235

RESUMO

The richness and structure of symbiont assemblages are shaped by many factors acting at different spatial and temporal scales. Among them, host phylogeny and geographic distance play essential roles. To explore drivers of richness and structure of symbiont assemblages, feather mites and seabirds are an attractive model due to their peculiar traits. Feather mites are permanent ectosymbionts and considered highly host-specific with limited dispersal abilities. Seabirds harbour species-rich feather mite communities and their colonial breeding provides opportunities for symbionts to exploit several host species. To unravel the richness and test the influence of host phylogeny and geographic distance on mite communities, we collected feather mites from 11 seabird species breeding across the Atlantic Ocean and Mediterranean Sea. Using morphological criteria, we identified 33 mite species, of which 17 were new or recently described species. Based on community similarity analyses, mite communities were clearly structured by host genera, while the effect of geography within host genera or species was weak and sometimes negligible. We found a weak but significant effect of geographic distance on similarity patterns in mite communities for Cory's shearwaters Calonectris borealis. Feather mite specificity mainly occurred at the host-genus rather than at host-species level, suggesting that previously inferred host species-specificity may have resulted from poorly sampling closely related host species. Overall, our results show that host phylogeny plays a greater role than geography in determining the composition and structure of mite assemblages and pinpoints the importance of sampling mites from closely-related host species before describing mite specificity patterns.


Assuntos
Ácaros , Animais , Mar Mediterrâneo , Aves , Especificidade de Hospedeiro , Oceano Atlântico
5.
Nucleic Acids Res ; 50(21): 12251-12265, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36454008

RESUMO

In-depth analysis of the transcriptomes of several model organisms has revealed that genomes are pervasively transcribed, giving rise to an abundance of non-canonical and mainly antisense RNA polymerase II-derived transcripts that are produced from almost any genomic context. Pervasive RNAs are degraded by surveillance mechanisms, but the repertoire of proteins that control the fate of these non-productive transcripts is still incomplete. Trypanosomes are single-celled eukaryotes that show constitutive RNA polymerase II transcription and in which initiation and termination of transcription occur at a limited number of sites per chromosome. It is not known whether pervasive transcription exists in organisms with unregulated RNA polymerase II activity, and which factors could be involved in the process. We show here that depletion of RBP33 results in overexpression of ∼40% of all annotated genes in the genome, with a marked accumulation of sense and antisense transcripts derived from silenced regions. RBP33 loss does not result in a significant increase in chromatin accessibility. Finally, we have found that transcripts that increase in abundance upon RBP33 knockdown are significantly more stable in RBP33-depleted trypanosomes, and that the exosome complex is responsible for their degradation. Our results provide strong evidence that RBP33 dampens non-productive transcription in trypanosomes.


Assuntos
RNA Polimerase II , Trypanosoma , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , RNA Antissenso/genética , RNA Antissenso/metabolismo , Trypanosoma/genética
6.
Front Public Health ; 10: 1048404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579069

RESUMO

Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-CoV-2 and for whole viral genome sequencing. Our results show a 3.2 and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 8 cases of confirmed co-infection and 11 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A, and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Western African country. Besides, it highlights the non-negligible frequency of co-infection with malaria in African communities.


Assuntos
COVID-19 , Coinfecção , Malária , Criança , Adolescente , Humanos , SARS-CoV-2 , Burkina Faso/epidemiologia , Prevalência , COVID-19/epidemiologia , Pandemias , Coinfecção/epidemiologia , Estudos Soroepidemiológicos , Malária/epidemiologia
7.
Genes (Basel) ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292619

RESUMO

Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.


Assuntos
Malária Falciparum , Malária , Plasmodium , Humanos , Animais , Plasmodium falciparum/genética , Malária Falciparum/genética , Malária Falciparum/parasitologia , Malária/genética , Malária/parasitologia , Cromatina/metabolismo , Epigênese Genética/genética , Plasmodium/genética , Fatores de Transcrição/genética , RNA Mensageiro/metabolismo , RNA/metabolismo
8.
Cell Host Microbe ; 30(2): 139-141, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35143762

RESUMO

Sickle cell haemoglobin (HbS) confers protection, albeit incomplete, from severe malaria. A recent study by Band et al. in Nature on parasite genomic variation of severe malaria cases identifies parasite genomic regions with alleles associated with severe disease risk in HbS individuals. The protective effect of HbS depends therefore on parasite genotype.


Assuntos
Anemia Falciforme , Malária Falciparum , Malária , Anemia Falciforme/genética , Evolução Biológica , Citoproteção , Genótipo , Hemoglobina Falciforme/genética , Humanos , Malária/prevenção & controle , Malária Falciparum/parasitologia
9.
NAR Genom Bioinform ; 3(1): lqaa113, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33987532

RESUMO

Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.

10.
Front Genet ; 11: 602949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365050

RESUMO

The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.

11.
Parasit Vectors ; 13(1): 270, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471505

RESUMO

BACKGROUND: Granada virus belongs to the genus Phlebovirus within the Naples serocomplex and was detected for the first time in sand flies from Spain in 2003. Seroprevalence studies have revealed that Granada virus may infect humans with most cases being asymptomatic. Moreover, recent studies in vector samples revealed that the related Massilia and Arrabida phleboviruses could be also circulating in Spain. The objective of this study was to develop and assess a new sensitive real-time RT-PCR assay for Granada virus diagnosis able to detect the related phleboviruses Massilia and Arrabida. METHODS: Two specific primers and one unique probe to detect Granada, Massilia and Arrabida viruses, without differentiating between them, were designed targeting the conserved L-segment of their genome. Sensitivity was assessed using 10-fold serial dilutions of quantified in vitro DNA samples. Specificity was evaluated by testing different genomic RNA extracted from other representative phleboviruses. The new assay was used for virus detection in sand flies collected in 2012 from the Balearic Archipelago, a touristic hotspot in the Mediterranean. RESULTS: The real-time RT-PCR assay exhibited a sensitivity per reaction of 19 copies for Granada and Arrabida, and 16 copies for Massilia. No other related phleboviruses were detected. From the 37 pools of sand fly samples studied from four different Balearic Islands, we detected one positive in the island of Cabrera. CONCLUSIONS: To our knowledge, the method described here is the first real-time RT-PCR designed to detect Granada virus and the related Massilia and Arrabida phleboviruses. The study demonstrated that this is a rapid, robust and reliable assay for the accurate diagnosis of human infections as well as for virus surveillance in vectors.


Assuntos
Phlebovirus/classificação , Phlebovirus/isolamento & purificação , Psychodidae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Primers do DNA/genética , Feminino , Genoma Viral , Masculino , Filogenia , RNA Viral/genética , Sensibilidade e Especificidade , Espanha
12.
Trends Parasitol ; 36(6): 495-498, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32407679

RESUMO

In an ideal world, there are equal opportunities for women to enter and progress in all scientific disciplines without bias or prejudice. Here, we share our experiences in building communities of women parasitology and offer easy-to-implement guidelines for scientists and institutions to overcome unconscious bias and create environments with better gender equality and diversity.


Assuntos
Relações Interpessoais , Pessoal de Laboratório/estatística & dados numéricos , Parasitologia/organização & administração , Preconceito/prevenção & controle , Diversidade Cultural , Humanos , Parasitologia/estatística & dados numéricos , Parasitologia/tendências , Seleção de Pessoal/normas
13.
Sci Rep ; 9(1): 15869, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676805

RESUMO

Developmental conditions can impact the adult phenotype via epigenetic changes that modulate gene expression. In mammals, methylation of the glucocorticoid receptor gene Nr3c1 has been implicated as mediator of long-term effects of developmental conditions, but this evidence is limited to humans and rodents, and few studies have simultaneously tested for associations between DNA methylation, gene expression and phenotype. Adverse environmental conditions during early life (large natal brood size) or adulthood (high foraging costs) exert multiple long-term phenotypic effects in zebra finches, and we here test for effects of these manipulations on DNA methylation and expression of the Nr3c1 gene in blood. Having been reared in a large brood induced higher DNA methylation of the Nr3c1 regulatory region in adulthood, and this effect persisted over years. Nr3c1 expression was negatively correlated with methylation at 2 out of 8 CpG sites, and was lower in hard foraging conditions, despite foraging conditions having no effect on Nr3c1 methylation at our target region. Nr3c1 expression also correlated with glucocorticoid traits: higher expression level was associated with lower plasma baseline corticosterone concentrations and enhanced corticosterone reactivity. Our results suggest that methylation of the Nr3c1 regulatory region can contribute to the mechanisms underlying the emergence of long-term effects of developmental conditions in birds, but in our system current adversity dominated over early life experiences with respect to receptor expression.


Assuntos
Proteínas Aviárias/biossíntese , Metilação de DNA/fisiologia , Tentilhões/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Receptores de Glucocorticoides/biossíntese , Animais , Proteínas Aviárias/genética , Corticosterona/sangue , Feminino , Tentilhões/genética , Masculino , Receptores de Glucocorticoides/genética
15.
Brief Funct Genomics ; 18(5): 313-357, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31058281

RESUMO

Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.


Assuntos
Cromatina/metabolismo , Culicidae/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Esporozoítos/genética , Animais , Cromatina/química , Cromatina/genética , Epigênese Genética/fisiologia , Redes Reguladoras de Genes/fisiologia , Genoma , Humanos , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia , Fenótipo , Plasmodium falciparum/metabolismo , Proteoma/genética , Esporozoítos/metabolismo , Transcriptoma/genética
16.
Epigenetics Chromatin ; 12(1): 5, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616642

RESUMO

BACKGROUND: Infection by the human malaria parasite leads to important changes in mosquito phenotypic traits related to vector competence. However, we still lack a clear understanding of the underlying mechanisms and, in particular, of the epigenetic basis for these changes. We have examined genome-wide distribution maps of H3K27ac, H3K9ac, H3K9me3 and H3K4me3 by ChIP-seq and the transcriptome by RNA-seq, of midguts from Anopheles gambiae mosquitoes blood-fed uninfected and infected with natural isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. RESULTS: We report 15,916 regions containing differential histone modification enrichment between infected and uninfected, of which 8339 locate at promoters and/or intersect with genes. The functional annotation of these regions allowed us to identify infection-responsive genes showing differential enrichment in various histone modifications, such as CLIP proteases, antimicrobial peptides-encoding genes, and genes related to melanization responses and the complement system. Further, the motif analysis of regions differentially enriched in various histone modifications predicts binding sites that might be involved in the cis-regulation of these regions, such as Deaf1, Pangolin and Dorsal transcription factors (TFs). Some of these TFs are known to regulate immunity gene expression in Drosophila and are involved in the Notch and JAK/STAT signaling pathways. CONCLUSIONS: The analysis of malaria infection-induced chromatin changes in mosquitoes is important not only to identify regulatory elements and genes underlying mosquito responses to P. falciparum infection, but also for possible applications to the genetic manipulation of mosquitoes and to other mosquito-borne systems.


Assuntos
Anopheles/genética , Cromatina/genética , Código das Histonas , Animais , Anopheles/parasitologia , Cromatina/química , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Plasmodium falciparum/patogenicidade
17.
Nucleic Acids Res ; 46(18): 9414-9431, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30016465

RESUMO

Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.


Assuntos
Genoma de Protozoário/genética , Fases de Leitura Aberta/genética , Plasmodium falciparum/genética , Análise de Sequência de DNA , Sítios de Ligação , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Epigênese Genética/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
18.
Sci Rep ; 7: 40655, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091569

RESUMO

P. falciparum phenotypic plasticity is linked to the variant expression of clonal multigene families such as the var genes. We have examined changes in transcription and histone modifications that occur during sporogonic development of P. falciparum in the mosquito host. All var genes are silenced or transcribed at low levels in blood stages (gametocyte/ring) of the parasite in the human host. After infection of mosquitoes, a single var gene is selected for expression in the oocyst, and transcription of this gene increases dramatically in the sporozoite. The same PF3D7_1255200 var gene was activated in 4 different experimental infections. Transcription of this var gene during parasite development in the mosquito correlates with the presence of low levels of H3K9me3 at the binding site for the PF3D7_1466400 AP2 transcription factor. This chromatin state in the sporozoite also correlates with the expression of an antisense long non-coding RNA (lncRNA) that has previously been shown to promote var gene transcription during the intraerythrocytic cycle in vitro. Expression of both the sense protein-coding transcript and the antisense lncRNA increase dramatically in sporozoites. The findings suggest a complex process for the activation of a single particular var gene that involves AP2 transcription factors and lncRNAs.


Assuntos
Anopheles/parasitologia , Epigênese Genética , Regulação da Expressão Gênica , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Animais , Sítios de Ligação , Perfilação da Expressão Gênica , Genes de Protozoários , Histonas/metabolismo , Humanos , Estágios do Ciclo de Vida , Família Multigênica , Fenótipo , Plasmodium falciparum/metabolismo , Ligação Proteica , Fator de Transcrição AP-2/metabolismo , Transcriptoma
19.
Parasitology ; 143(13): 1730-1747, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27609411

RESUMO

Understanding the processes that shape parasite diversification, their distribution and abundance provides valuable information on the dynamics and evolution of disease. In this study, we assessed the diversity, distribution, host-specificity and infection patterns of apicomplexan parasites in amphibians and reptiles from Oman, Arabia. Using a quantitative PCR approach we detected three apicomplexan parasites (haemogregarines, lankesterellids and sarcocystids). A total of 13 haemogregarine haplotypes were identified, which fell into four main clades in a phylogenetic framework. Phylogenetic analysis of six new lankesterellid haplotypes revealed that these parasites were distinct from, but phylogenetically related to, known Lankesterella species and might represent new taxa. The percentage of infected hosts (prevalence) and the number of haemogregarines in the blood (parasitaemia) varied significantly between gecko species. We also found significant differences in parasitaemia between haemogregarine parasite lineages (defined by phylogenetic clustering of haplotypes), suggesting differences in host-parasite compatibility between these lineages. For Pristurus rupestris, we found significant differences in haemogregarine prevalence between geographical areas. Our results suggest that host ecology and host relatedness may influence haemogregarine distributions and, more generally, highlight the importance of screening wild hosts from remote regions to provide new insights into parasite diversity.


Assuntos
Apicomplexa/classificação , Apicomplexa/isolamento & purificação , Biodiversidade , Especificidade de Hospedeiro , Parasitemia/veterinária , Répteis/parasitologia , Animais , Apicomplexa/genética , Omã , Carga Parasitária , Parasitemia/parasitologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
20.
Mol Phylogenet Evol ; 98: 288-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26911521

RESUMO

In this study we used the complete fauna of geckos of the Socotra Archipelago to test whether the three gecko genera co-occurring in the islands (Pristurus, Hemidactylus and Haemodracon) produced similar outcomes of morphological and climatic diversification. To test this, we produced a time-calibrated tree of 346 geckos including all 16 endemic species of the archipelago and 26 potential close-relatives in the continent. Our dating estimates revealed that most of the diversity of geckos in the archipelago was the consequence of in situ diversification. However not all genera shared similar patterns of diversification. While in Hemidactylus and Haemodracon this involved great differences in body size and low levels of climatic diversification (mostly involving sympatric distributions), an opposite pattern appeared in Pristurus in which most of the diversification involved shifts in climatic envelopes (mostly involving allopatric and parapatric distributions) but almost no size differentiation. Consistently with this, Pristurus was the only genus in which rates of size diversification in islands were substantially lower than in the continent. This illustrates how different groups can greatly differ in their patterns of intra-island diversification and highlights the importance of taxon-dependent factors at determining different patterns of diversification in the same insular context.


Assuntos
Ecossistema , Ilhas , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , Aclimatação , Animais , Tamanho Corporal , Clima , Oceano Índico , Lagartos/genética , Iêmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...