Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; 35(1): e2208299, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36239273

RESUMO

A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4 , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, it is proposed that the dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.


Assuntos
Nanopartículas , Nanotubos , Cisteína/química , Rotação Ocular , Ouro/química , Nanotubos/química , Nanopartículas/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-36305423

RESUMO

The development of plasmonic nanomaterials with chiral geometry has drawn extensive attention owing to their practical implications in chiral catalysis, chiral metamaterials, or enantioselective biosensing and medicine. However, due to the lack of effective synthesis methods of hydrophobic nanoparticles (NPs) showing intrinsic, plasmonic chirality, their applications are currently limited to aqueous systems. In this work, we resolve the problem of achieving hydrophobic Au NPs with intrinsic chirality by efficient phase transfer of water-soluble NPs using low molecular weight, liquid crystal-like ligands. We confirmed that, after the phase transfer, Au NPs preserve strong, far-field circular dichroism (CD) signals, attesting their chiral geometry. The universality of the method is exemplified by using different types of NPs and ligands. We further highlight the potential of the proposed approach to realize chiral plasmonic, inorganic/organic nanocomposites with block copolymers, liquid crystals, and compounds forming physical gels. All soft matter composites sustain plasmonic CD signals with electron microscopies confirming well-dispersed nanoinclusions. The developed methodology allows us to expand the portfolio of plasmonic NPs with intrinsic structural chirality, thereby broadening the scope of their applications toward soft-matter based systems.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889542

RESUMO

The nanoparticle's synthesis had its tipping point at the beginning of the 21st century, opening up the possibility of manufacturing nanoparticles with almost every imaginable shape and size [...].

5.
Nanomaterials (Basel) ; 12(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745418

RESUMO

In this manuscript, polydimethylsiloxane (PDMS) sponges supporting metal nanoparticles (gold and palladium) were developed and their catalytic properties were studied through a model reaction such as the hydrogenation of p-nitrophenol. Different synthetic conditions for gold and palladium were studied to obtain the best catalyst in terms of nanoparticle loading. The as-prepared catalysts were characterized by different techniques such as scanning electron microscopy (SEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The catalytic efficiency and recyclability of the supported catalyst were tested in static conditions. In addition, thanks to the porous structure of the material where the catalytic centers (metal nanoparticles) are located, the model reaction for continuous flow systems was tested, passing the reaction components through the catalyst, observing a high efficiency and recyclability for these systems.

6.
Adv Colloid Interface Sci ; 288: 102338, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383472

RESUMO

In this review, we summarize the recent research focused on the combination of inorganic nanoparticles and α-, ß- and γ- cyclodextrins. Our intention is to highlight the most relevant publications on the synthesis of nanoparticle-cyclodextrin (NP-CD) nanohybrids, with CDs acting as reducing agents or through the post-synthetic modification of inorganic nanoparticles with CDs. We also discuss the new or enhanced properties that arise from the host-guest capabilities of the CDs and inorganic nanoparticles. Finally, we illustrate the potential applications of these materials in numerous research fields.


Assuntos
Ciclodextrinas , Nanopartículas
7.
Colloids Surf B Biointerfaces ; 197: 111405, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130523

RESUMO

Tuberculosis remains today a major public health issue with a total of 9 million new cases and 2 million deaths annually. The lack of an effective vaccine and the increasing emergence of new strains of Mycobacterium tuberculosis (Mtb) highly resistant to antibiotics, anticipate a complicated scenario in the near future. The use of nanoparticles features as an alternative to antibiotics in tackling this problem due to their potential effectiveness in resistant bacterial strains. In this context, silver nanoparticles have demonstrated high bactericidal efficacy, although their use is limited by their relatively high toxicity, which calls for the design of nanocarriers that allow silver based nanoparticles to be safely delivered to the target cells or tissues. In this work mesoporous silica nanoparticles are used as carriers of silver based nanoparticles as antimycobacterial agent against Mtb. Two different synthetic approaches have been used to afford, on the one hand, a 2D hexagonal mesoporous silica nanosystem which contains silver bromide nanoparticles distributed all through the silica network and, on the other hand, a core@shell nanosystem with metallic silver nanoparticles as core and mesoporous silica shell in a radial mesoporous rearrangement. Both materials have demonstrated good antimycobacterial capacity in in vitro test using Mtb, being lower the minimum inhibitory concentration for the nanosystem which contains silver bromide. Therefore, the interaction of this material with the mycobacterial cell has been studied by cryo-electron microscopy, establishing a direct connection between the antimycobactericidal effect observed and the damage induced in the cell envelope.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Nanopartículas , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Porosidade , Dióxido de Silício , Prata/farmacologia
8.
ACS Appl Mater Interfaces ; 12(41): 46557-46564, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924423

RESUMO

Surface-enhanced Raman spectroscopy (SERS) microfluidic chips for label-free and ultrasensitive detection are fabricated by integrating a plasmonic supercrystal within microfluidic channels. This plasmonic platform allows the uniform infiltration of the analytes within the supercrystal, reaching the so-called hot spots. Moreover, state-of-the-art simulations performed using large-scale supercrystal models demonstrate that the excellent SERS response is due to the hierarchical nanoparticle organization, the interparticle separation (IPS), and the presence of supercrystal defects. Proof-of-concept experiments confirm the outstanding performance of the microfluidic chips for the ultradetection of (bio)molecules with no metal affinity. In fact, a limit of detection (LOD) as low as 10-19 M was reached for crystal violet. The SERS microfluidic chips show excellent sensitivity in the direct analysis of pyocyanin secreted by Pseudomonas aeruginosa grown in a liquid culture medium. Finally, the further integration of a silica-based column in the plasmonic microchip provides charge-selective SERS capabilities as demonstrated for a mixture of positively and negatively charged molecules.

9.
Acta Biomater ; 101: 459-468, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706040

RESUMO

The poor delivery of nanoparticles to target cancer cells hinders their success in the clinical setting. In this work, an alternative target readily available for circulating nanoparticles has been selected to eliminate the need for nanoparticle penetration in the tissue: the tumor blood vessels. A tumor endothelium-targeted nanoparticle (employing an RGD-containing peptide) capable of co-delivering two anti-vascular drugs (one anti-angiogenic drug and one vascular disruption agent) is here presented. Furthermore, the nanodevice presents two additional anti-vascular capabilities upon activation by Near-Infrared light: provoking local hyperthermia (by gold nanorods in the system) and generating toxic reactive oxygen species (by the presence of a photosensitizer). RGD-targeting is shown to increase uptake by HUVEC cells, and while the nanoparticles are shown not to be toxic for these cells, upon Near-Infrared irradiation their almost complete killing is achieved. The combination of all four therapeutic modalities is then evaluated in an ex ovo fibrosarcoma xenograft model, which shows a significant reduction in the number of blood vessels irrigating the xenografts when the nanoparticles are present, as well as the destruction of the existing blood vessels upon irradiation. These results suggest that the combination of different anti-vascular therapeutic strategies in a single nanocarrier appears promising and should be further explored in the future. STATEMENT OF SIGNIFICANCE MVR2019: The combination of antivascular drugs with different mechanisms of action (such as antiangiogenic drugs and vascular disruption agents) has been recently proposed as a promising approach to maximize the therapeutic potential of anti-vascular therapeutics. Given the capacity of nanoparticles to co-deliver different drugs in optimizable ratios, nanomedicine appears to have a huge potential for the development of this kind of multimodal antivascular. To showcase this, an multimodal anti-vascular nanodevice for cancer therapy is here presented. This tumor endothelium-targeted nanosystem is capable of co-delivering two anti-vascular drugs (anti-angiogenic and vascular disruption agent) while also providing two additional therapeutic modalities that can be activated by Near-Infrared light: provoking local hyperthermia (photothermal therapy) and generating toxic reactive oxygen species (photodynamic therapy).


Assuntos
Inibidores da Angiogênese/farmacologia , Liberação Controlada de Fármacos , Nanopartículas/química , Fotoquimioterapia , Terapia Fototérmica , Inibidores da Angiogênese/química , Animais , Sobrevivência Celular , Embrião de Galinha , Doxiciclina/química , Doxiciclina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/química , Estilbenos/farmacologia , Temperatura
10.
Acc Chem Res ; 52(7): 1855-1864, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31243968

RESUMO

For decades, plasmonic nanoparticles have been extensively studied due to their extraordinary properties, related to localized surface plasmon resonances. A milestone in the field has been the development of the so-called seed-mediated growth method, a synthetic route that provided access to an extraordinary diversity of metal nanoparticles with tailored size, geometry and composition. Such a morphological control came along with an exquisite definition of the optical response of plasmonic nanoparticles, thereby increasing their prospects for implementation in various fields. The susceptibility of surface plasmons to respond to small changes in the surrounding medium or to perturb (enhance/quench) optical processes in nearby molecules, has been exploited for a wide range of applications, from biomedicine to energy harvesting. However, the possibilities offered by plasmonic nanoparticles can be expanded even further by their careful assembly into either disordered or ordered structures, in 2D and 3D. The assembly of plasmonic nanoparticles gives rise to coupling/hybridization effects, which are strongly dependent on interparticle spacing and orientation, generating extremely high electric fields (hot spots), confined at interparticle gaps. Thus, the use of plasmonic nanoparticle assemblies as optical sensors have led to improving the limits of detection for a wide variety of (bio)molecules and ions. Importantly, in the case of highly ordered plasmonic arrays, other novel and unique optical effects can be generated. Indeed, new functional materials have been developed via the assembly of nanoparticles into highly ordered architectures, ranging from thin films (2D) to colloidal crystals or supercrystals (3D). The progress in the design and fabrication of 3D supercrystals could pave the way toward next generation plasmonic sensors, photocatalysts, optomagnetic components, metamaterials, etc. In this Account, we summarize selected recent advancements in the field of highly ordered 3D plasmonic superlattices. We first analyze their fascinating optical properties for various systems with increasing degrees of complexity, from an individual metal nanoparticle through particle clusters with low coordination numbers to disordered self-assembled structures and finally to supercrystals. We then describe recent progress in the fabrication of 3D plasmonic supercrystals, focusing on specific strategies but without delving into the forces governing the self-assembly process. In the last section, we provide an overview of the potential applications of plasmonic supercrystals, with a particular emphasis on those related to surface-enhanced Raman scattering (SERS) sensing, followed by a brief highlight of the main conclusions and remaining challenges.

11.
Nanomaterials (Basel) ; 8(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547539

RESUMO

Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays.

12.
Chemistry ; 24(27): 6992-7001, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29493820

RESUMO

The implementation of nanoparticles as nanomedicines requires sophisticated surface modifications to reduce the immune response and enhance recognition abilities. Mesoporous silica nanoparticles present extraordinary host-guest abilities and facile surface functionalization. These two factors make them ideal candidates for the development of novel drug-delivery systems, at the expense of increasing structural complexity. With this idea in mind, a system composed of triggerable and tunable silica nanoparticles was developed for application as drug-delivery nanocarriers. Diels-Alder cycloaddition adducts were chosen as thermal-responsive units that permitted the binding of gold nanocaps able to block the pores and allow the incorporation of targeting fragments. The capping efficiency was tested under different thermal conditions to give outstanding efficiencies within the physiological range and mild temperatures, as well as enhanced release under pulsing heating cycles, which showed the best release profiles.

13.
Nanomaterials (Basel) ; 7(6)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587297

RESUMO

A new and promising biosurfactant extracted from corn steep liquor has been used for the green synthesis of gold and silver nanoparticles (NPs) in a one-step procedure induced by temperature. Most of the biosurfactants proposed in the literature are produced by pathogenic microorganisms; whereas the biosurfactant used in the current work was extracted from a liquid stream, fermented spontaneously by lactic acid bacteria, which are "generally recognized as safe" (GRAS) microorganisms. The reduction of a gold precursor in the presence of a biosurfactant gives rise to a mixture of nanospheres and nanoplates with distinct optical features. Moreover, the growth of nanoplates can be promoted by increasing the reaction temperature to 60 °C. In the case of silver, the biosurfactant just induces the formation of pseudo-spherical NPs. The biosurfactant plays a key role in the reduction of the metal precursor, as well as in the stabilization of the resulting NPs. Furthermore, the antimicrobial activity of the resulting silver colloids has been analyzed against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The biosurfactant stabilized NPs slightly increased the inhibition of E. coli in comparison with citrate stabilized Ag NPs. The use of this biosurfactant extracted from corn steep liquor for the synthesis of metal NPs contributes to enhancing the application of green technologies and increasing the utilization of clean, non-toxic and environmentally safe production processes. Therefore, it can help to reduce environmental impact, minimize waste and increase energy efficiency in the field of nanomaterials.

14.
Nano Lett ; 13(9): 4236-41, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23952010

RESUMO

A thorough understanding of the three-dimensional (3D) atomic structure and composition of core-shell nanostructures is indispensable to obtain a deeper insight on their physical behavior. Such 3D information can be reconstructed from two-dimensional (2D) projection images using electron tomography. Recently, different electron tomography techniques have enabled the 3D characterization of a variety of nanostructures down to the atomic level. However, these methods have all focused on the investigation of nanomaterials containing only one type of chemical element. Here, we combine statistical parameter estimation theory with compressive sensing based tomography to determine the positions and atom type of each atom in heteronanostructures. The approach is applied here to investigate the interface in core-shell Au@Ag nanorods but it is of great interest in the investigation of a broad range of nanostructures.

15.
Nat Mater ; 11(11): 930-5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23085569

RESUMO

It is widely accepted that the physical properties of nanostructures depend on the type of surface facets. For Au nanorods, the surface facets have a major influence on crucial effects such as reactivity and ligand adsorption and there has been controversy regarding facet indexing. Aberration-corrected electron microscopy is the ideal technique to study the atomic structure of nanomaterials. However, these images correspond to two-dimensional (2D) projections of 3D nano-objects, leading to an incomplete characterization. Recently, much progress was achieved in the field of atomic-resolution electron tomography, but it is still far from being a routinely used technique. Here we propose a methodology to measure the 3D atomic structure of free-standing nanoparticles, which we apply to characterize the surface facets of Au nanorods. This methodology is applicable to a broad range of nanocrystals, leading to unique insights concerning the connection between the structure and properties of nanostructures.

16.
Langmuir ; 28(2): 1453-9, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22165910

RESUMO

Gold nanorods in aqueous solution are generally surrounded by surfactants or capping agents. This is crucial for anisotropic growth during synthesis and for their final stability in solution. When CTAB is used, a bilayer has been evidenced from analytical methods even though no direct morphological characterization of the precise thickness and compactness has been reported. The type of surfactant layer is also relevant to understand the marked difference in further self-assembling properties of gold nanorods as experienced using 16-EO(1)-16 gemini surfactant instead of CTAB. To obtain a direct measure of the thickness of the surfactant layer on gold nanorods synthesized by the seeded growth method, we coupled TEM, SAXS, and SANS experiments for the two different cases, CTAB and gemini 16-EO(1)-16. Despite the strong residual signal from micelles in excess, it can be concluded that the thickness is imposed by the chain length of the surfactant and corresponds to a bilayer with partial interdigitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...