Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569848

RESUMO

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Assuntos
Meio Ambiente Extraterreno , Marte , Calibragem , Meio Ambiente Extraterreno/química , Minerais/análise , Análise Espectral Raman/métodos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119443, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33485243

RESUMO

The landing site of the next planetary mission lead by ESA (ExoMars 2022) will be Oxia Planum. This location has been chosen due to different reasons, among them, the existence of sedimentary rocks that could host remains of organic matter. The fact that this type of rocks coexists with volcanic ones makes of high importance the study of the processes and the possible interactions that could happen among them. Therefore, in this research work the Armintza outcrop (Biscay, North of Spain) is proposed as an Oxia Planum analogue since it has the dichotomy of volcanic and sedimentary rock layers that is expected on the landing site of the ExoMars 2022 mission. As Raman and visible near infrared spectroscopies will be in the payload of the rover of that mission, they have been used to characterize the samples collected in the Armintza outcrop. With the help of these techniques, feldspars (albite mainly) and phyllosilicates (kaolinite and dickite, together with micas and chlorite minerals) have been identified as the major products on the samples, together with some weathering products (carbonates, sulphates, oxides) and apatite. Moreover, remains of kerogen have been detected in the sedimentary layers in contact with the interlayered lava flows, confirming the capability of similar sedimentary-volcanic layers to trap and store organic remains for millions of years. After establishing which compounds have volcanic or sedimentary origin, and which must be considered alteration phases, we can consider Armintza as a good Oxia Planum analogue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA