Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732927

RESUMO

Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints.

2.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896633

RESUMO

In this study, a novel technique for the quantification of the human chorionic gonadotropin (hCG) hormone using localized surface plasmons and a tapered optical fiber decorated with gold nanoparticles (Au-NPs) is reported. The tapered optical fiber fabrication process involves stretching a single-mode optical fiber using the flame-brushing system. The waist of the tapered optical fiber reaches a diameter of 3 µm. Decoration of the taper is achieved through the photodeposition of 100 nm Au-NPs using the drop-casting technique and a radiation source emitting at 1550 nm. The presence of the hCG hormone in the sample solutions is verified by Fourier-transform infrared spectroscopy (FTIR), revealing the presence of bands related to functional groups, such as C=O (1630 cm-1), which are associated with proteins and lipids, components of the hCG hormone. Quantification tests for hormone concentrations were carried out by measuring the optical power response of the tapered optical fiber with Au-NPs under the influence of hCG hormone concentrations, ranging from 1 mIU/mL to 100,000 mIU/mL. In the waist of the tapered optical fiber, the evanescent field is amplified because of localized surface plasmons generated by the nanoparticles and the laser radiation through the optical fiber. Experimental results demonstrated a proportional relationship between measured radiation power and hCG concentration, with the optical power response decreasing from 4.45 mW down to 2.5 mW, as the hCG hormone concentration increased from 1 mIU/mL up to 100,000 mIU/mL. Furthermore, the spectral analysis demonstrated a spectral shift of 14.2 nm with the increment of the hCG hormone concentration. The measurement system exhibits promising potential as a sensor for applications in the biomedical and industrial fields.

3.
Opt Express ; 28(19): 28713-28726, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988136

RESUMO

In this paper we compare the intensity distributions in the paraxial and tightly focused regimes corresponding to a double ring perfect optical vortex (DR-POV). Using the scalar diffraction theory and the Richards-Wolf formalism, the fields in the back focal plane of a low and high (tight focusing) NA lens are calculated. In the paraxial case we experimentally observed a DR-POV whose rings enclose a dark zone thanks to the destructive interference introduced by a π phase shift. In the tightly focused regime, however, the numerical simulations showed that the intensity near the focus is influenced by the input field polarization and it is not intuitive. In both cases we found that the dark region subtended between the rings has a minimal width that is inversely proportional to the pupil radius of the system, reaching 0.42λ for the radially polarized DR-POV. For the tightly focused case, we calculated the optical forces in the transversal and longitudinal coordinates exerted on a metallic particle. As a result, it is theoretically demonstrated that the circularly polarized DR-POV can trap Au metallic particles in 3D using a light wavelength close to its resonance.

4.
Sensors (Basel) ; 17(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878161

RESUMO

A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...