Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(7): 1887-1904, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37335362

RESUMO

A single adenosine receptor gene (dAdoR) has been detected in Drosophila melanogaster. However, its function in different cell types of the nervous system is mostly unknown. Therefore, we overexpressed or silenced the dAdoR gene in eye photoreceptors, all neurons, or glial cells and examined the fitness of flies, the amount and daily pattern of sleep, and the influence of dAdoR silencing on Bruchpilot (BRP) presynaptic protein. Furthermore, we examined the dAdoR and brp gene expression in young and old flies. We found that a higher level of dAdoR in the retina photoreceptors, all neurons, and glial cells negatively influenced the survival rate and lifespan of male and female Drosophila in a cell-dependent manner and to a different extent depending on the age of the flies. In old flies, expression of both dAdoR and brp was higher than in young ones. An excess of dAdoR in neurons improved climbing in older individuals. It also influenced sleep by lengthening nighttime sleep and siesta. In turn, silencing of dAdoR decreased the lifespan of flies, although it increased the survival rate of young flies. It hindered the climbing of older males and females, but did not change sleep. Silencing also affected the daily pattern of BRP abundance, especially when dAdoR expression was decreased in glial cells. The obtained results indicate the role of adenosine and dAdoR in the regulation of fitness in flies that is based on communication between neurons and glial cells, and the effect of glial cells on synapses.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sono/genética , Neurônios/metabolismo , Neuroglia , Receptores Purinérgicos P1/metabolismo , Ritmo Circadiano/fisiologia
2.
Eur J Neurosci ; 54(5): 5785-5797, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33666288

RESUMO

DmMANF, Drosophila melanogaster mesencephalic astrocyte-derived neurotrophic factor (DmMANF) is an evolutionarily conserved orthologue of mammalian MANF. This neurotrophic factor exerts many functions in the Drosophila brain, particularly those dependent on glial cells. As we found in our earlier study, downregulation of DmMANF in glia induces degeneration of glial cells in the first optic neuropil (lamina) where DmMANF abundance is especially high. In the present study, we observed that changes in the level of DmMANF in two types of glia, astrocyte-like glia (AlGl) and ensheathing glia (EnGl), affect activity and sleep of flies. Interestingly, a proper level of DmMANF in AlGl seems to be important in guiding processes of pigment dispersing factor (PDF)-expressing clock neurons. This is supported by our finding that DmMANF overexpression in AlGl leads to structural changes in the architecture of the PDF-positive arborization in the brain. Finally, we detected that DmMANF also affects rhythms in glia themselves, as circadian oscillations in expression of the catalytic α subunit of the sodium pump in the lamina epithelial glia were abolished after DmMANF silencing. DmMANF expressed in AlGl and EnGl seems to affect the activity of neurons leading to changes in behaviour.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Encéfalo/metabolismo , Ritmo Circadiano , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuroglia/metabolismo , Sono
4.
Front Physiol ; 9: 361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29695973

RESUMO

Circadian plasticity of the visual system of Drosophila melanogaster depends on functioning of both the neuronal and glial oscillators. The clock function of the former is already quite well-recognized. The latter, however, is much less known and documented. In this study we focus on the glial oscillators that reside in the distal part of the second visual neuropil, medulla (dMnGl), in vicinity of the PIGMENT-DISPERSING FACTOR (PDF) releasing terminals of the circadian clock ventral Lateral Neurons (LNvs). We reveal the heterogeneity of the dMnGl, which express the clock protein PERIOD (PER) and the pan-glial marker REVERSED POLARITY (REPO) at higher (P1) or lower (P2) levels. We show that the cells with stronger expression of PER display also stronger expression of REPO, and that the number of REPO-P1 cells is bigger during the day than during the night. Using a combination of genetic markers and immunofluorescent labeling with anti PER and REPO Abs, we have established that the P1 and P2 cells can be associated with two different types of the dMnGl, the ensheathing (EnGl), and the astrocyte-like glia (ALGl). Surprisingly, the EnGl belong to the P1 cells, whereas the ALGl, previously reported to play the main role in the circadian rhythms, display the characteristics of the P2 cells (express very low level of PER and low level of REPO). Next to the EnGl and ALGl we have also observed another type of cells in the distal medulla that express PER and REPO, although at very low levels. Based on their morphology we have identified them as the T1 interneurons. Our study reveals the complexity of the distal medulla circadian network, which appears to consist of different types of glial and neuronal peripheral clocks, displaying molecular oscillations of higher (EnGl) and lower (ALGl and T1) amplitudes.

5.
Front Physiol ; 9: 230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615925

RESUMO

We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.

6.
Front Neurosci ; 11: 610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163014

RESUMO

In Drosophila melanogaster, mesencephalic astrocyte-derived neurotrophic factor (DmMANF) is an evolutionarily conserved ortholog of mammalian MANF and cerebral dopamine neurotrophic factor (CDNF), which have been shown to promote the survival of dopaminergic neurons in the brain. We observed especially high levels of DmMANF in the visual system of Drosophila, particularly in the first optic neuropil (lamina). In the lamina, DmMANF was found in glial cells (surface and epithelial glia), photoreceptors and interneurons. Interestingly, silencing of DmMANF in all neurons or specifically in photoreceptors or L2 interneurons had no impact on the structure of the visual system. However, downregulation of DmMANF in glial cells induced degeneration of the lamina. Remarkably, this degeneration in the form of holes and/or tightly packed membranes was observed only in the lamina epithelial glial cells. Those membranes seem to originate from the endoplasmic reticulum, which forms autophagosome membranes. Moreover, capitate projections, the epithelial glia invaginations into photoreceptor terminals that are involved in recycling of the photoreceptor neurotransmitter histamine, were less numerous after DmMANF silencing either in neurons or glial cells. The distribution of the alpha subunit of Na+/K+-ATPase protein in the lamina cell membranes was also changed. At the behavioral level, silencing of DmMANF either in neurons or glial cells affected the daily activity/sleep pattern, and flies showed less activity during the day but higher activity during the night than did controls. In the case of silencing in glia, the lifespan of flies was also shortened. The obtained results showed that DmMANF regulates many functions in the brain, particularly those dependent on glial cells.

7.
Curr Opin Insect Sci ; 7: 76-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32846686

RESUMO

The circadian clock generates circadian plasticity in some of the clock and non-clock neurons leading to the daily changes in their structure and in the number of synaptic contacts. This plasticity affects neuronal networks in the brain. The two best known examples of circadian changes in neuronal networks are those observed in the first optic neuropil (lamina) of the fly's visual system and between one group of clock neurons, the small ventral lateral neurons (s-LNvs), and their target cells in the dorsal part of the Drosophila brain. Both of these networks are remodeled in the course of the day by the circadian clock and they are further affected by external stimuli.

8.
Front Physiol ; 5: 102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772085

RESUMO

In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the fly's head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.

9.
Front Physiol ; 4: 36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986707

RESUMO

The circadian changes in morphology of the first visual neuropil or lamina of Diptera represent an example of the neuronal plasticity controlled by the circadian clock (circadian plasticity). It is observed in terminals of the compound eye photoreceptor cells, the peripheral oscillators expressing the clock genes. However, it has been found also in their postsynaptic partners, the L1 and L2 monopolar cells, in which the activity of the clock genes have not yet been detected. The circadian input that the L1 and L2 receive seems to originate not only from the retina photoreceptors and from the circadian pacemaker neurons located in the brain, but also from the glial cells that express the clock genes and thus contain circadian oscillators. This paper summarizes the morphological and biochemical rhythms in glia of the optic lobe, shows how they contribute to circadian plasticity, and discusses how glial clocks may modulate circadian rhythms in the lamina.

10.
Dev Neurobiol ; 73(1): 14-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22589214

RESUMO

In the fly's visual system, the morphology of cells and the number of synapses change during the day. In the present study we show that in the first optic neuropil (lamina) of Drosophila melanogaster, a presynaptic active zone protein Bruchpilot (BRP) exhibits a circadian rhythm in abundance. In day/night (or light/dark, LD) conditions the level of BRP increases two times, in the morning and in the evening. The same pattern of changes in the BRP level was detected in whole brain homogenates, thus indicating that the majority of synapses in the brain peaks twice during the day. However, these two peaks in BRP abundance, measured as the fluorescence intensity of immunolabeling, seem to be regulated differently. The peak in the morning is predominantly regulated by light and involves the transduction pathway in the retina photoreceptors. This peak is present neither in wild-type Canton-S flies in constant darkness (DD), nor in norpA(7) phototransduction mutant in LD. However, it also depends on the clock gene per, because it is abolished in the per(0) arrhythmic mutant. In turn, the peak of BRP in the evening is endogenously regulated by an input from the pacemaker located in the brain. This peak is present in Canton-S flies in DD, as well as in the norpA(7) mutant in LD, but is absent in per(01), tim,(01) and cry(01) mutants in LD. In addition both peaks seem to depend on clock gene-expressing photoreceptors and glial cells of the visual system.


Assuntos
Membrana Basal/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/fisiologia , Neurópilo/citologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Escuridão , Drosophila melanogaster , Regulação da Expressão Gênica/genética , Neurópilo/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Interferência de RNA/fisiologia
11.
J Insect Physiol ; 55(5): 459-68, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19428365

RESUMO

In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined alpha-subunit expression from the intensity of immunolabeling. For the beta-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the alpha-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per(0) mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4+UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the alpha-subunit showed a robust daily rhythm in concentration changes while changes in the beta-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the alpha-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Regulação Enzimológica da Expressão Gênica , ATPase Trocadora de Sódio-Potássio/genética , Animais , Ritmo Circadiano , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Masculino , Neurópilo/enzimologia , Neurópilo/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Vias Visuais/enzimologia , Vias Visuais/fisiologia
12.
Acta Neurobiol Exp (Wars) ; 68(2): 322-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18511964

RESUMO

Neurons and glial cells in the fly's visual system exhibit circadian rhythms through changes in shape and size. Moreover, the number of synaptic contacts between these cells changes during the day and night and in the case of one type of synapses, feedback synapses, is maintained under constant conditions indicating an endogenous origin of this rhythm. The structural changes described above, involving the oscillations in the number of synapses and the size of interneurons and glial cells, are examples of plasticity in the central nervous system driven by internal inputs from a circadian clock and by external stimuli such as light. They are also modulated by visual and other sensory stimuli and by motor activity.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Animais , Axônios/efeitos dos fármacos , Ritmo Circadiano/genética , Dendritos/efeitos dos fármacos , Drosophila/fisiologia , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura
13.
J Neurobiol ; 59(2): 205-15, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15085538

RESUMO

In the housefly's first optic neuropile, or lamina, the axons of two classes of monopolar cell interneurons, L1 and L2, exhibit a daily rhythm of size changes: swelling during the day, and shrinking by night. At least for the L2 cells this rhythm is circadian. Moreover, epithelial glial cells that enwrap each lamina cartridge, its monopolar cell axons, and their surrounding crown of input photoreceptor terminals also change size, but in the opposite direction to the changes in L1 and L2-swelling by night and shrinking by day. The rhythmic changes in glia indicate the possible involvement of these cells in the lamina's circadian system. To examine their role in regulating the rhythmic changes of L1 and L2's axon sizes we have injected three chemicals into the haemolymph of the fly's head: fluorocitrate (FL) and iodoacetate (IAA), which affect the metabolism of glial cells, and octanol (OC), which closes gap junction channels. All chemicals exerted an effect on L1 and L2, which depended on the time of injection, the drug concentration, and the postinjection times at which we examined the fly's brains. Moreover, day/night changes in the axon sizes of L1 and L2 were increased in FL- and IAA-treated flies, indicating that glial cells may normally inhibit these changes by regulating the sizes of L1 and L2's axons during the day and night. In turn, lack of a day/night rhythm in L1 and L2 after OC injections shows that the rhythm's persistence depends on communication between the lamina cells through gap junction channels.


Assuntos
Ritmo Circadiano/fisiologia , Moscas Domésticas/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Feminino , Moscas Domésticas/ultraestrutura , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Células Fotorreceptoras de Invertebrados/ultraestrutura , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura
14.
Neuron ; 36(6): 1063-77, 2002 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-12495622

RESUMO

A protein required to localize mitochondria to Drosophila nerve terminals has been identified genetically. Photoreceptors mutant for milton show aberrant synaptic transmission despite normal phototransduction. Without Milton, synaptic terminals and axons lack mitochondria, although mitochondria are numerous in neuronal cell bodies. In contrast, synaptic vesicles continue to be transported to and concentrated at synapses. Milton protein is associated with mitochondria and is present primarily in axons and synapses. A likely explanation of the apparent trafficking defect is offered by the coimmunoprecipitation of Milton and kinesin heavy chain. Transfected into HEK293T cells, Milton induces a redistribution of mitochondria within the cell. We propose that Milton is a mitochondria-associated protein required for kinesin-mediated transport of mitochondria to nerve terminals.


Assuntos
Transporte Axonal/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/embriologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/isolamento & purificação , Células Fotorreceptoras de Invertebrados/anormalidades , Terminações Pré-Sinápticas/metabolismo , Animais , Células Cultivadas , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Imuno-Histoquímica , Cinesinas/metabolismo , Masculino , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Mutação/genética , Proteínas do Tecido Nervoso/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...