Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 27553, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282258

RESUMO

The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained.

2.
Nano Lett ; 16(6): 3415-25, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27187840

RESUMO

Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells.

3.
Nanotechnology ; 26(33): 335603, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26222711

RESUMO

High quality single crystalline zinc gallate (ZnGa2O4) nanowires (NWs) were grown using a combination of chemical vapor deposition and atomic layer deposition techniques. Morphological, structural and optical investigations revealed the formation of Ga2O3-ZnO core-shell NWs and their conversion into ZnGa2O4 NWs after annealing via a solid state reaction. This material conversion was systematically confirmed for single NWs by various measurement techniques including scanning and transmission electron microscopy, Raman spectroscopy and voltage-dependent cathodoluminescence. Moreover, a model system based on the obtained results has been provided explaining the formation mechanism of the ZnGa2O4 NWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...