Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(19): 8891-8897, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726256

RESUMO

Two-dimensional chiral metasurfaces seem to contradict Lord Kelvin's geometric definition of chirality since they can be made to coincide by performing rotational operations. Nevertheless, most planar chiral metasurface designs often use complex meta-atom shapes to create flat versions of three-dimensional helices, although the visual appearance does not improve their chiroptical response but complicates their optimization and fabrication due to the resulting large parameter space. Here we present one of the geometrically simplest two-dimensional chiral metasurface platforms consisting of achiral dielectric rods arranged in a square lattice. Chirality is created by rotating the individual meta-atoms, making their arrangement chiral and leading to chiroptical responses that are stronger or comparable to more complex designs. We show that resonances depending on the arrangement are robust against geometric variations and behave similarly in experiments and simulations. Finally, we explain the origin of chirality and behavior of our platform by simple considerations of the geometric asymmetry and gap size.

2.
Acta Biomater ; 168: 309-322, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479158

RESUMO

The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of the art methods are compared for investigating a dental filling including FTIR- and quantum cascade laser IR-imaging microscopy for the microscale and scattering-type scanning near-field optical microscopy for the nanoscale.


Assuntos
Microscopia , Qualidade de Vida , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microscopia/métodos , Espectrofotometria Infravermelho , Materiais Dentários , Teste de Materiais , Resinas Compostas/química
3.
Sci Rep ; 11(1): 21860, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750511

RESUMO

Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.


Assuntos
Microscopia/métodos , Nanopartículas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Células A549/química , Células A549/patologia , Escherichia coli/química , Escherichia coli/citologia , Humanos , Microscopia Intravital/métodos , Nanotecnologia , Fenômenos Ópticos , Compostos de Silício , Análise de Célula Única , Espectroscopia de Infravermelho com Transformada de Fourier , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...