Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741481

RESUMO

In this work, the chemical reduction of a hybrid pyracylene-hexa-peri-hexabenzocoronene (HPH) nanographene was investigated with different alkali metals (Na, K, Rb) to reveal its remarkable multielectron acceptor abilities. The UV-vis and 1H NMR spectroscopy monitoring of the stepwise reduction reactions supports the existence of all intermediate reduction states up to the hexaanion for HPH. Tuning the experimental conditions enabled the synthesis of the HPH anions with gradually increasing reduction states (up to -5) isolated with different alkali metal ions as crystalline materials. The single-crystal X-ray diffraction structure analysis demonstrates that the highly negatively charged HPH anions (-4 and -5) exhibit a drastic geometry change from boat-shaped (observed in the neutral parent, mono- and dianions) to a chair conformation, which was proved to be fully reversible by NMR spectroscopy. DFT calculations show that this geometry change is induced by an enhanced interaction between the coordinated metal ions and negatively charged HPH core in the chair conformation.

2.
J Chem Theory Comput ; 20(6): 2404-2422, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466924

RESUMO

σ-Functionals belong to the class of Kohn-Sham (KS) correlation functionals based on the adiabatic-connection fluctuation-dissipation theorem and are technically closely related to the random phase approximation (RPA). They have the same computational demand as the latter, with the computational effort of an energy evaluation for both methods being lower than that of a preceding hybrid DFT calculation for typical systems but yield much higher accuracy, reaching chemical accuracy of 1 kcal/mol for quantities such as reactions and transition energies in main group chemistry. In previous work on σ-functionals, rather large Gaussian basis sets have been used. Here, we investigate the actual basis set requirements of σ-functionals and present three setups that employ smaller Gaussian basis sets ranging from quadruple-ζ (QZ) to triple-ζ (TZ) quality and represent a good compromise between accuracy and computational efficiency. Furthermore, we introduce an implementation of σ-functionals based on Slater-type basis sets and present two setups of QZ and TZ quality for this implementation. We test the accuracy of these setups on a large database of various physical properties and types of reactions, as well as equilibrium geometries and vibrational frequencies. As expected, the accuracy of σ-functional calculations becomes somewhat lower with a decreasing basis set size. However, for all setups considered here, calculations with σ-functionals are clearly more accurate than those within the RPA and even more so than those of the conventional KS methods. For the smallest setup using Gaussian-type basis functions and Slater-type basis functions, we introduce a reparametrization that reduces the loss in accuracy due to the basis set error to some extent. A comparison with the range-separated hybrid ωB97X-V and the double hybrid DSD-BLYP-D3 shows that σ functionals outperform in accuracy both of these accurate and, for their class, representative functionals.

3.
J Phys Chem Lett ; 15(9): 2529-2536, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412511

RESUMO

Electrochemically active liquid organic hydrogen carriers (EC-LOHCs) can be used directly in fuel cells; so far, however, they have rather low hydrogen storage capacities. In this work, we study the electrooxidation of a potential EC-LOHC with increased energy density, 1-cyclohexylethanol, which consists of two storage functionalities (a secondary alcohol and a cyclohexyl group). We investigated the product spectrum on low-index Pt single-crystal surfaces in an acidic environment by combining cyclic voltammetry, chronoamperometry, and in situ infrared spectroscopy, supported by density functional theory. We show that the electrooxidation of 1-cyclohexylethanol is a highly structure-sensitive reaction with activities Pt(111) ≫ Pt(100) > Pt(110). Most importantly, we demonstrate that 1-cyclohexylethanol can be directly converted to acetophenone, which desorbs from the electrode surface. However, decomposition products are formed, which lead to poisoning. If the latter side reactions could be suppressed, the electrooxidation of 1-cyclohexylethanol would enable the development of EC-LOHCs with greatly increased hydrogen storage capacities.

4.
Nanotechnology ; 35(14)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38048605

RESUMO

The adsorption, reaction and thermal stability of bromine on Rh(111)-supported hexagonal boron nitride (h-BN) and graphene were investigated. Synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS allowed us to follow the adsorption process and the thermal evolutionin situon the molecular scale. Onh-BN/Rh(111), bromine adsorbs exclusively in the pores of the nanomesh while we observe no such selectivity for graphene/Rh(111). Upon heating, bromine undergoes an on-surface reaction onh-BN to form polybromides (170-240 K), which subsequently decompose to bromide (240-640 K). The high thermal stability of Br/h-BN/Rh(111) suggests strong/covalent bonding. Bromine on graphene/Rh(111), on the other hand, reveals no distinct reactivity except for intercalation of small amounts of bromine underneath the 2D layer at high temperatures. In both cases, adsorption is reversible upon heating. Our experiments are supported by a comprehensive theoretical study. DFT calculations were used to describe the nature of theh-BN nanomesh and the graphene moiré in detail and to study the adsorption energetics and substrate interaction of bromine. In addition, the adsorption of bromine onh-BN/Rh(111) was simulated by molecular dynamics using a machine-learning force field.

5.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38149736

RESUMO

For open-shell atoms and molecules, Kohn-Sham (KS) methods typically resort to spin-polarized approaches that exhibit spin-contamination and often break spatial symmetries. As a result, the KS Hamiltonian operator and the KS orbitals do not exhibit the space and spin symmetry of the physical electron system. The KS formalism can be symmetrized in a rigorous way only in real space, only in spin space, or both in real and spin space. Within such symmetrized KS frameworks, we present exact-exchange-only optimized-effective-potential (OEP) methods that are free of spin contamination and/or spatial symmetry breaking. The effect of symmetrizations on the total energy and its parts and on the exchange potential is analyzed. The presented exact-exchange-only OEP methods may serve as a starting point for high-level symmetrized KS methods based, e.g., on the adiabatic-connection fluctuation-dissipation theorem.

6.
Chemphyschem ; 24(21): e202300704, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919872

RESUMO

The front cover artwork illustrates the competition of [6]-, [7]- and [8]helicene for attaining a silver(I) cation. This struggle takes place in the electrospray process during solvent evaporation, leading to the well-known tweezer-like surrounding of Ag+ by the helicene in the [1:1] complex. In this competition, the larger helicenes outperform the smaller ones. The main topic of our investigation, however, is the resulting [2:1] complex in which a second helicene attaches via π-π stacking to the [1:1] tweezer complex. Read the full text of the Research Article at 10.1002/cphc.202300496.

7.
Chem Commun (Camb) ; 59(93): 13879-13882, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37933531

RESUMO

Cu(I)-Hydrido complexes supported by dibenzo[b,f]azepinyl P-alkene hybrid ligands and stabilized by electrostatic interactions in a Cu-H⋯KCl⋯BR3 arrangement can be trapped with CO2 at low temperature to afford Cu(I)-formates. The complexes are isolable with and without a pendant BEt3 group and show strong Cu-O and weak B-O interactions.

8.
J Phys Chem A ; 127(45): 9495-9501, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934505

RESUMO

The supramolecular chemistry of cycloparaphenylenes (CPPs) is characterized by the ability of the ring system to undergo both concave and convex π-π interactions. As a consequence, ring-in-ring complexes can be formed in which the CPP serves as the host as well as the guest molecule ([n + x]CPP⊃[n]CPP). In this work, host-guest ring-in-ring complexes of [n]CPPs (n = 5-12) are investigated by means of electrospray ionization-tandem mass spectrometry (ESI-MS2) and laser desorption ionization mass spectrometry (LDI-MS). Extending the experimentally known complexes with ring size differences of five and six phenyl units (x = 5 and 6), we observe complexes with ring size differences of three up to seven phenyl units (x = 3-7). Energy-resolved collision experiments reveal that the charge is mainly located at the inner ring and complexes with phenyl unit differences of five and six are the most stable. In complexes featuring the same size difference, the complex stabilities slightly increase with an increasing size of the involved [n]CPPs. Utilizing the π-extended [12]carbon nanobelt ([12]CNB) as the guest also revealed an increase in complex stability. This study paves the way for a deeper understanding of the host-guest chemistry of CPPs.

9.
Commun Chem ; 6(1): 224, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853170

RESUMO

Gallium-rich supported catalytically active liquid metal solutions (SCALMS) were recently introduced as a new way towards heterogeneous single atom catalysis. SCALMS were demonstrated to exhibit a certain resistance against coking during the dehydrogenation of alkanes using Ga-rich alloys of noble metals. Here, the conceptual catalytic application of SCALMS in dry reforming of methane (DRM) is tested with non-noble metal (Co, Cu, Fe, Ni) atoms in the gallium-rich liquid alloy. This study introduces SCALMS to high-temperature applications and an oxidative reaction environment. Most catalysts were shown to undergo severe oxidation during DRM, while Ga-Ni SCALMS retained a certain level of activity. This observation is explained by a kinetically controlled redox process, namely oxidation to gallium oxide species and re-reduction via H2 activation over Ni. Consequentially, this redox process can be shifted to the metallic side when using increasing concentrations of Ni in Ga, which strongly suppresses coke formation. Density-functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations were performed to confirm the increased availability of Ni at the liquid alloy-gas interface. However, leaching of gallium via the formation of volatile oxidic species during the hypothesised redox cycles was identified indicating a critical instability of Ga-Ni SCALMS for prolonged test durations.

10.
Chemphyschem ; 24(22): e202300510, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37609858

RESUMO

This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33-0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.

11.
Chemphyschem ; 24(21): e202300496, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37578805

RESUMO

Gas-phase complexes of [n]helicenes with n=6, 7 and 8 and the silver(I) cation are generated utilizing electrospray ionization mass spectrometry (ESI-MS). Besides the well-established [1 : 1] helicene/Ag+ -complex in which the helicene provides a tweezer-like surrounding for the Ag+ , there is also a [2 : 1] complex formed. Density functional theory (DFT) calculations in conjunction with energy-resolved collision-induced dissociation (ER-CID) experiments reveal that the second helicene attaches via π-π stacking to the first helicene, which is part of the pre-formed [1 : 1] tweezer complex with Ag+ . For polycyclic aromatic hydrocarbons (PAHs) of planar structure, the [2 : 1] complex with silver(I) is typically structured as an Ag+ -bound dimer in which the Ag+ would bind to both PAHs as the central metal ion (PAH-Ag+ -PAH). For helicenes, the Ag+ -bound dimer is of similar thermochemical stability as the π-π stacked dimer, however, it is kinetically inaccessible. Coronene (Cor) is investigated in comparison to the helicenes as an essentially planar PAH. In analogy to the π-π stacked dimer of the helicenes, the Cor-Ag+ -Cor-Cor complex is also observed. Competition experiments using [n]helicene mixtures reveal that the tweezer complexes of Ag+ are preferably formed with the larger helicenes, with n=6 being entirely ignored as the host for Ag+ in the presence of n=7 or 8.

12.
Chemistry ; 29(46): e202301328, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277680

RESUMO

In a solid catalyst with ionic liquid layer (SCILL), ionic liquid (IL) coatings are used to improve the selectivity of noble metal catalysts. To understand the origins of this selectivity control, we performed model studies by surface science methods in ultrahigh vacuum (UHV). We investigated the growth and thermal stability of ultrathin IL films by infrared reflection absorption spectroscopy (IRAS). We combined these experiments with scanning tunneling microscopy (STM) to obtain information on the orientation of the ions, the interactions with the surface, the intermolecular interactions, and the structure formation. Additionally, we performed DFT calculations and molecular dynamics (MD) simulations to interpret the experimental data. We studied the IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [C2 C1 Im][OTf] on Au(111) surfaces. We observe a weakly bound multilayer of [C2 C1 Im][OTf], which is stable up to 390 K, while the monolayer desorbs at ∼450 K. [C2 C1 Im][OTf] preferentially adsorbs at the step edges and elbows of the herringbone reconstruction of Au(111). The anion adsorbs via the SO3 group with the molecular axis perpendicular to the surface. At low coverage, the [C2 C1 Im][OTf] crystallizes in a glass-like 2D phase with short-range order. At higher coverage, we observe a phase transition to a 6-membered ring structure with long-range order.

14.
ACS Appl Mater Interfaces ; 15(15): 19536-19544, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37017296

RESUMO

Solution-based atomic layer deposition (sALD) processes enable the preparation of thin films on nanostructured surfaces while controlling the film thickness down to a monolayer and preserving the homogeneity of the film. In sALD, a similar operation principle as in gas-phase ALD is used, however, with a broader range of accessible materials and without requiring expensive vacuum equipment. In this work, a sALD process was developed to prepare CuSCN on a Si substrate using the precursors CuOAc and LiSCN. The film growth was studied by ex situ atomic force microscopy (AFM), analyzed by a neural network (NN) approach, ellipsometry, and a newly developed in situ infrared (IR) spectroscopy experiment in combination with density functional theory (DFT). In the self-limiting sALD process, CuSCN grows on top of an initially formed two-dimensional (2D) layer as three-dimensional spherical nanoparticles with an average size of ∼25 nm and a narrow particle size distribution. With increasing cycle number, the particle density increases and larger particles form via Ostwald ripening and coalescence. The film grows preferentially in the ß-CuSCN phase. Additionally, a small fraction of the α-CuSCN phase and defect sites form.

15.
Sci Rep ; 13(1): 4458, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932106

RESUMO

Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems.

16.
J Chem Phys ; 158(4): 044107, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725500

RESUMO

Recently, Kohn-Sham (KS) methods with new correlation functionals, called σ-functionals, have been introduced. Technically, σ-functionals are closely related to the well-known random phase approximation (RPA); formally, σ-functionals are rooted in perturbation theory along the adiabatic connection. If employed in a post-self-consistent field manner in a Gaussian basis set framework, then, σ-functional methods are computationally very efficient. Moreover, for main group chemistry, σ-functionals are highly accurate and can compete with high-level wave-function methods. For reaction and transition state energies, e.g., chemical accuracy of 1 kcal/mol is reached. Here, we show how to calculate first derivatives of the total energy with respect to nuclear coordinates for methods using σ-functionals and then carry out geometry optimizations for test sets of main group molecules, transition metal compounds, and non-covalently bonded systems. For main group molecules, we additionally calculate vibrational frequencies. σ-Functional methods are found to yield very accurate geometries and vibrational frequencies for main group molecules superior not only to those from conventional KS methods but also to those from RPA methods. For geometries of transition metal compounds, not surprisingly, best geometries are found for RPA methods, while σ-functional methods yield somewhat less good results. This is attributed to the fact that in the optimization of σ-functionals, transition metal compounds could not be represented well due to the lack of reliable reference data. For non-covalently bonded systems, σ-functionals yield geometries of the same quality as the RPA or as conventional KS schemes combined with dispersion corrections.

17.
Chemistry ; 29(16): e202203734, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36507855

RESUMO

We investigate the gas-phase chemistry of noncovalent complexes of [10]cycloparaphenylene ([10]CPP) with C60 and C70 by means of atmospheric pressure photoionization and electrospray ionization mass spectrometry. The literature-known [1 : 1] complexes, namely [10]CPP⊃C60 and [10]CPP⊃C70 , are observed as radical cations and anions. Their stability and charge distribution are studied using energy-resolved collision-induced dissociation (ER-CID). These measurements reveal that complexes with a C70 core exhibit a greater stability and, on the other hand, that the radical cations are more stable than the respective radical anions. Regarding the charge distribution, in anionic complexes charges are exclusively located on C60 or C70 , while the charges reside on [10]CPP in the case of cationic complexes. [2 : 1] complexes of the ([10]CPP2 ⊃C60/70 )+ ⋅/- ⋅ type are observed for the first time as isolated solitary gas-phase species. Here, C60 -based [2 : 1] complexes are less stable than the respective C70 analogues. By virtue of the high stability of cationic [1 : 1] complexes, [2 : 1] complexes show a strongly reduced stability of the radical cations. DFT analyses of the minimum geometries as well as molecular dynamics calculations support the experimental data. Furthermore, our novel gas-phase [2 : 1] complexes are also found in 1,2-dichlorobenzene. Insights into the thermodynamic parameters of the binding process as well as the species distribution are derived from isothermal titration calorimetry (ITC) measurements.

18.
Chemistry ; 29(6): e202203101, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36287191

RESUMO

A novel, benign synthetic strategy towards soluble tetra(peri-naphthylene)anthracene (TPNA) decorated with triisopropylsilylethynyl substituents has been established. The compound is perfectly stable under ambient conditions in air and features intense and strongly bathochromically shifted UV/vis absorption and emission bands reaching to near-IR region beyond 900 nm. Cyclic voltammetry measurements revealed four facilitated reversible redox events comprising two oxidations and two reductions. These remarkable experimental findings were corroborated by theoretical studies to identify the TPNA platform a particularly useful candidate for the development of functional near-IR fluorophores upon appropriate functionalization.

20.
ChemSusChem ; 15(24): e202201483, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36213958

RESUMO

Molecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) couple, combine solar energy conversion, storage, and release in a simple one-photon one-molecule process. Triggering the energy release electrochemically enables high control of the process, high selectivity, and reversibility. In this work, the influence of the molecular design of the MOST couple on the electrochemically triggered back-conversion reaction was addressed for the first time. The MOST systems phenyl-ethyl ester-NBD/QC (NBD1/QC1) and p-methoxyphenyl-ethyl ester-NBD/QC (NBD2/QC2) were investigated by in-situ photoelectrochemical infrared spectroscopy, voltammetry, and density functional theory modelling. For QC1, partial decomposition (40 %) was observed upon back-conversion and along with a voltammetric peak at 0.6 Vfc , which was assigned primarily to decomposition. The back-conversion of QC2, however, occurred without detectable side products, and the corresponding peak at 0.45 Vfc was weaker by a factor of 10. It was concluded that the electrochemical stability of a NBD/QC couple is easy tunable by simple structural changes. Furthermore, the charge input and, therefore, the current for the electrochemically triggered energy release is very low, which ensures a high overall efficiency of the MOST system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...