Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(16): 10637-10647, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31385516

RESUMO

Two iron porphyrin complexes with either mesityl (FeTMP) or thiophene (FeT3ThP) peripheral substituents were attached to basal pyrolytic graphite and Ag electrodes via different immobilization methods. By combining cyclic voltammetry and in-operando surface-enhanced Raman spectroscopy along with MD simulations and DFT calculations, their respective surface attachment, redox chemistry and activity toward electrocatalytic oxygen reduction was investigated. For both porphyrin complexes, it could be shown that catalytic activity is restricted to the first (few) molecular layer(s), although electrodes covered with thiophene-substituted complexes showed a better capability to consume the oxygen at a given overpotential even in thicker films. The spectroscopic data and simulations suggest that both porphyrin complexes attach to a Ag electrode surface in a way that maximum planarity and minimum distance between the catalytic iron site and the electrode is achieved. However, due to the distinctive design of the FeT3ThP complex, the thiophene rings are capable of occupying a conformation, via rotation around the bonding axis to the porphyrin, in which all four sulfur atoms can coordinate to the Ag surface. This effect creates a dense and planar surface coverage of the porphyrin on the electrode facilitating a fast (multi) electron transfer via several covalent Ag-S bonds. In contrast, bulky mesityl groups as peripheral substituents, which have been initially introduced to prevent aggregation and improve catalytic behavior in solution, exert a negative effect on the overall electrocatalytic performance in the immobilized state as a less dense coverage and less stable interactions with the surface are formed. Our results underline the importance of rationally designed heterogenized molecular catalysts to achieve optimal turnover, which not only strictly applies to the here discussed oxygen reduction reaction but eventually holds also true for other energy conversion reactions such as carbon dioxide reduction.

2.
Langmuir ; 34(20): 5703-5711, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29553272

RESUMO

Respiratory complex I (CpI) is a key player in the way organisms obtain energy, being an energy transducer, which couples nicotinamide adenine dinucleotide (NADH)/quinone oxidoreduction with proton translocation by a mechanism that remains elusive so far. In this work, we monitored the function of CpI in a biomimetic, supported lipid membrane system assembled on a 4-aminothiophenol (4-ATP) self-assembled monolayer by surface-enhanced infrared absorption spectroscopy. 4-ATP serves not only as a linker molecule to a nanostructured gold surface but also as pH sensor, as indicated by concomitant density functional theory calculations. In this way, we were able to monitor NADH/quinone oxidoreduction-induced transmembrane proton translocation via the protonation state of 4-ATP, depending on the net orientation of CpI molecules induced by two complementary approaches. An associated change of the amide I/amide II band intensity ratio indicates conformational modifications upon catalysis which may involve movements of transmembrane helices or other secondary structural elements, as suggested in the literature [ Di Luca , Proc. Natl. Acad. Sci. U.S.A. , 2017 , 114 , E6314 - E6321 ].


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Prótons , Espectrofotometria Infravermelho , Catálise , Complexo I de Transporte de Elétrons/química , NAD/química , Oxirredução
3.
Am J Physiol Regul Integr Comp Physiol ; 284(3): R771-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12446277

RESUMO

During terminal erythroid differentiation, degradation of RNA is a potential source for nucleotide triphosphates (NTPs) that act as allosteric effectors of hemoglobin. In this investigation, we assessed the developmental profile of RNA and purine/pyrimidine trinucleotides in circulating embryonic chick red blood cells (RBC). Extensive changes of the NTP pattern are observed which differ significantly from what is observed for adult RBC. The biochemical mechanisms have not been identified yet. Therefore, we studied the role of AMP deaminase and IMP/GMP 5'-nucleotidase, which are key enzymes for the regulation of the purine nucleotide pool. Finally, we tested the effect of major NTPs on the oxygen affinity of embryonic/adult hemoglobin. The results are as follows. 1) Together with ATP, UTP and CTP serve as allosteric effectors of hemoglobin. 2) Degradation of erythroid RNA is apparently a major source for NTPs. 3) Developmental changes of nucleotide content depend on the activities of key enzymes (AMP deaminase, IMP/GMP 5'-nucleotidase, and pyrimidine 5'-nucleotidase). 4) Oxygen-dependent hormonal regulation of AMP deaminase adjusts the red cell ATP concentration and therefore the hemoglobin oxygen affinity.


Assuntos
Trifosfato de Adenosina/sangue , Embrião de Galinha/metabolismo , Citidina Trifosfato/sangue , Eritrócitos/metabolismo , Uridina Trifosfato/sangue , 5'-Nucleotidase/sangue , 5'-Nucleotidase/metabolismo , AMP Desaminase/metabolismo , Adenosina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Envelhecimento/sangue , Animais , Sangue Fetal/metabolismo , Hiperóxia/enzimologia , Oxiemoglobinas/metabolismo , RNA/sangue , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...