Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(6): 1921-1928, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911151

RESUMO

Raloxifene, a selective oestrogen receptor modulator (SERM), has demonstrated efficacy in the prevention and therapy of oestrogen receptor-positive (ER+) breast cancer, with some degree of effectiveness against triple-negative forms. This suggests the presence of oestrogen receptor-independent pathways in raloxifene-mediated anticancer activity. To enhance the potential of raloxifene against the most aggressive breast cancer cells, hybrid molecules combining the drug with a metal chelator moiety have been developed. In this study, we synthetically modified the structure of raloxifene by incorporating a 2,2'-bipyridine (2,2'-bipy) moiety, resulting in [6-methoxy-2-(4-hydroxyphenyl)benzo[b]thiophen-3-yl]-[4-(2,2'-bipyridin-4'-yl-methoxy)phenyl]methanone (bipyraloxifene). We investigated the cytotoxic activity of both raloxifene and bipyraloxifene against ER+ breast adenocarcinomas, glioblastomas, and a triple-negative breast cancer (TNBC) cell line, elucidating their mode of action against TNBC. Bipyraloxifene maintained a mechanism based on caspase-mediated apoptosis but exhibited significantly higher activity and selectivity compared to the original drug, particularly evident in triple-negative stem-like MDA-MB-231 cells.

2.
ChemMedChem ; 19(14): e202400006, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642018

RESUMO

Triple-negative breast cancer (TNBC) poses challenges in therapy due to the absence of target expression such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Frequently, the treatment of TNBC involves the combination of several therapeutics. However, an enhanced therapeutic effect can be also achieved within a single molecule. The efficacy of raloxifene can be improved by designing a raloxifene-based hybrid drug bearing a 2,2'-bipyridine moiety (2). Integration of platinum(II), palladium(II), and nickel(II) complexes into this structure dramatically changed the cytotoxicity. The platinum(II) dichloride complex 3 did not demonstrate any activity, while palladium(II) and nickel(II) dichloride complexes 4 and 5 exhibited various cytotoxic behavior towards different types of hormone-receptor positive (HR+) cancer and TNBC cell lines. The replacement of the two chlorido ligands in 3-5 with a dicarbollide (carborate) ion [C2B9H11]2- resulted in reduced activity of compounds 6, 7, and 8. However, the palladacarborane complex 7 demonstrated higher selectivity towards TNBC. Furthermore, the mechanism of action was shifted from cytotoxic to explicitly cytostatic with detectable proliferation arrest and accelerated aging, characterized by senescence-associated phenotype of TNBC cells. This study provides valuable insights into the development of hybrid therapeutics against TNBC.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Níquel , Paládio , Platina , Cloridrato de Raloxifeno , Neoplasias de Mama Triplo Negativas , Humanos , Paládio/química , Paládio/farmacologia , Níquel/química , Níquel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Platina/química , Platina/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Proliferação de Células/efeitos dos fármacos , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Feminino
3.
J Biol Chem ; 281(17): 12020-9, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16473880

RESUMO

The flux of phosphorylated carbohydrates, the major export products of chloroplasts, is regulated at the level of the inner and presumably also at the level of the outer membrane. This is achieved through modulation of the outer membrane Oep21 channel currents and tuning of its ion selectivity. Refined analysis of the Oep21 channel properties by biochemical and electrophysiological methods revealed a channel formed by eight beta-strands with a wider pore vestibule of dvest approximately 2.4 nm at the intermembrane site and a narrower filter pore of drestr approximately 1 nm. The Oep21 pore contains two high affinity sites for ATP, one located at a relative transmembrane electrical distance delta = 0.56 and the second close to the vestibule at the intermembrane site. The ATP-dependent current block and reduction in anion selectivity of the Oep21 channel is relieved by the competitive binding of phosphorylated metabolic intermediates like 3-phosphoglycerate and glycerinaldehyde 3-phosphate. Deletion of a C-terminal putative FX4K binding motif in Oep21 decreased the capability of the channel to tune its ion selectivity by about 50%, whereas current block remained unchanged.


Assuntos
Trifosfato de Adenosina/farmacologia , Ânions/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Canais Iônicos/fisiologia , Pisum sativum/química , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Ligação Competitiva , Deleção de Genes , Gliceraldeído 3-Fosfato/metabolismo , Ácidos Glicéricos/metabolismo , Membranas Intracelulares/química , Bicamadas Lipídicas , Potenciais da Membrana , Pisum sativum/genética , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA