Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109137, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420585

RESUMO

Cardiovagal neurons (CVNs) innervate cardiac ganglia through the vagus nerve to control cardiac function. Although the cardioinhibitory role of CVNs in nucleus ambiguus (CVNNA) is well established, the nature and functionality of CVNs in dorsal motor nucleus of the vagus (CVNDMV) is less clear. We therefore aimed to characterize CVNDMV anatomically, physiologically, and functionally. Optogenetically activating cholinergic DMV neurons resulted in robust bradycardia through peripheral muscarinic (parasympathetic) and nicotinic (ganglionic) acetylcholine receptors, but not beta-1-adrenergic (sympathetic) receptors. Retrograde tracing from the cardiac fat pad labeled CVNNA and CVNDMV through the vagus nerve. Using whole-cell patch-clamp, CVNDMV demonstrated greater hyperexcitability and spontaneous action potential firing ex vivo despite similar resting membrane potentials, compared to CVNNA. Chemogenetically activating DMV also caused significant bradycardia with a correlated reduction in anxiety-like behavior. Thus, DMV contains uniquely hyperexcitable CVNs and is capable of cardioinhibition and robust anxiolysis.

2.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961449

RESUMO

Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. GLP-1RAs inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc) but only indirectly, implicating synaptic afferents to AgRP neurons. To investigate, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics. Applying this method to AgRP neurons in mice predicts 21 afferent subtypes in the mediobasal and paraventricular hypothalamus. Among these are Trh+ Arc neurons (TrhArc), which express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TrhArc neurons inhibits AgRP neurons and decreases feeding in an AgRP neuron-dependent manner. Silencing TrhArc neurons increases feeding and body weight and reduces liraglutide's satiating effects. Our results thus demonstrate a widely applicable method for molecular connectomics, reveal the molecular organization of AgRP neuron afferents, and shed light on a neurocircuit through which GLP-1RAs suppress appetite.

3.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014247

RESUMO

Cardiovagal neurons (CVNs) innervate cardiac ganglia through the vagus nerve to control cardiac function. Although the cardioinhibitory role of CVNs in nucleus ambiguus (CVNNA) is well established, the nature and functionality of CVNs in dorsal motor nucleus of the vagus (CVNDMV) is less clear. We therefore aimed to characterize CVNDMV anatomically, physiologically, and functionally. Optogenetically activating cholinergic DMV neurons resulted in robust bradycardia through peripheral muscarinic (parasympathetic) and nicotinic (ganglionic) acetylcholine receptors, but not beta-1-adrenergic (sympathetic) receptors. Retrograde tracing from the cardiac fat pad labeled CVNNA and CVNDMV through the vagus nerve. Using whole cell patch clamp, CVNDMV demonstrated greater hyperexcitability and spontaneous action potential firing ex vivo despite similar resting membrane potentials, compared to CVNNA. Chemogenetically activating DMV also caused significant bradycardia with a correlated reduction in anxiety-like behavior. Thus, DMV contains uniquely hyperexcitable CVNs capable of cardioinhibition and robust anxiolysis.

4.
Sci Adv ; 9(34): eadh9570, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624889

RESUMO

Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMHLepR) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal. Exogenous leptin, silencing, or chemogenetic stimulation of DMHLepR neurons disrupts the development of molecular and behavioral food entrainment. Repetitive DMHLepR neuron activation leads to the partitioning of a secondary bout of circadian locomotor activity that is in phase with the stimulation and dependent on an intact suprachiasmatic nucleus (SCN). Last, we found a DMHLepR neuron subpopulation that projects to the SCN with the capacity to influence the phase of the circadian clock. This direct DMHLepR-SCN connection is well situated to integrate the metabolic and circadian systems, facilitating mealtime anticipation.


Assuntos
Relógios Circadianos , Receptores para Leptina , Receptores para Leptina/genética , Hipotálamo , Núcleo Supraquiasmático , Aclimatação
5.
Front Aging Neurosci ; 15: 1218193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409006

RESUMO

Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a 6 h advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, a circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.

6.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205532

RESUMO

Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a six hour advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, an SCN-independent circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.

7.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865258

RESUMO

Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.

8.
Cell Rep ; 41(9): 111718, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36450244

RESUMO

Obesity comorbidities such as diabetes and cardiovascular disease are pressing public health concerns. Overconsumption of calories leads to weight gain; however, neural mechanisms underlying excessive food consumption are poorly understood. Here, we demonstrate that dopamine receptor D1 (Drd1) expressed in the agouti-related peptide/neuropeptide Y (AgRP/NPY) neurons of the arcuate hypothalamus is required for appropriate responses to a high-fat diet (HFD). Stimulation of Drd1 and AgRP/NPY co-expressing arcuate neurons is sufficient to induce voracious feeding. Delivery of a HFD after food deprivation acutely induces dopamine (DA) release in the ARC, whereas animals that lack Drd1 expression in ARCAgRP/NPY neurons (Drd1AgRP-KO) exhibit attenuated foraging and refeeding of HFD. These results define a role for the DA input to the ARC that encodes acute responses to food and position Drd1 signaling in the ARCAgRP/NPY neurons as an integrator of the hedonic and homeostatic neuronal feeding circuits.


Assuntos
Dopamina , Neurônios , Animais , Proteína Relacionada com Agouti , Alimentos , Transdução de Sinais , Neuropeptídeo Y
9.
Front Integr Neurosci ; 16: 957193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965599

RESUMO

How dopamine signaling regulates biological rhythms is an area of emerging interest. Here we review experiments focused on delineating dopamine signaling in the suprachiasmatic nucleus, nucleus accumbens, and dorsal striatum to mediate a range of biological rhythms including photoentrainment, activity cycles, rest phase eating of palatable food, diet-induced obesity, and food anticipatory activity. Enthusiasm for causal roles for dopamine in the regulation of circadian rhythms, particularly those associated with food and other rewarding events, is warranted. However, determining that there is rhythmic gene expression in dopamine neurons and target structures does not mean that they are bona fide circadian pacemakers. Given that dopamine has such a profound role in promoting voluntary movements, interpretation of circadian phenotypes associated with locomotor activity must be differentiated at the molecular and behavioral levels. Here we review our current understanding of dopamine signaling in relation to biological rhythms and suggest future experiments that are aimed at teasing apart the roles of dopamine subpopulations and dopamine receptor expressing neurons in causally mediating biological rhythms, particularly in relation to feeding, reward, and activity.

10.
iScience ; 25(7): 104605, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789850

RESUMO

Obesity is a pandemic afflicting more than 300 million people worldwide, driven by consumption of calorically dense and highly rewarding foods. Dopamine (DA) signaling has been implicated in neural responses to highly palatable nutrients, but the exact mechanisms through which DA modulates homeostatic feeding circuits remains unknown. A subpopulation of arcuate (ARC) agouti-related peptide (AgRP)/neuropeptide Y (NPY) (ARCAgRP/NPY+) neurons express the D(1A) dopamine receptor (Drd1) and are stimulated by DA, suggesting one potential avenue for dopaminergic regulation of food intake. Using patch clamp electrophysiology, we evaluated the responses of ARC Drd1-expressing (ARCDrd1+) neurons to overnight fasting and leptin. Collectively, ARCDrd1+ neurons were less responsive to caloric deficit than ARCAgRP/NPY+ neurons; however, ARCDrd1+ neurons were inhibited by the satiety hormone leptin. Using Channelrhodopsin-2-Assisted Circuit Mapping, we identified novel subgroups of ARCDrd1+ neurons that inhibit or excite ARCAgRP/NPY+ neurons. These findings suggest dopamine receptive neurons have multimodal actions in food intake circuits.

12.
Behav Brain Res ; 414: 113470, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34280463

RESUMO

Obesity is a costly, global epidemic that is perpetuated by an unhealthy diet. A significant factor in the initial consumption and maintenance of an unhealthy diet is the abundance of highly palatable, calorically dense foods. The aim of the present study is to better understand the effects of high fat diet (HFD) consumption on food valuation and preference, and to elucidate the neurobiological mechanisms mediating these effects. By using a novel food preference assay, we found that prolonged consumption of a HFD diminishes preference for and consumption of the more calorically dense food choice when two lab diets are presented. Additionally, we demonstrated that prolonged HFD consumption dampens ventral tegmental c-fos induction during hedonic feeding, implicating the mesolimbic dopamine signaling pathway as a target of HFD. Notably, both the changes in food preference and this reduced c-fos induction were reversed during withdrawal from HFD. Further, HFD-induced alterations in food preference were attenuated by exercise. Our findings suggest that prolonged HFD consumption leads to anhedonia and altered feeding choices, and this is associated with changes in mesolimbic dopamine signaling.


Assuntos
Anedonia/fisiologia , Dieta Hiperlipídica , Dopamina/metabolismo , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia , Condicionamento Físico Animal/fisiologia , Estriado Ventral/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Comportamento Animal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
13.
Trends Endocrinol Metab ; 32(7): 488-499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958275

RESUMO

Metabolic disorders result from dysregulation of central nervous system and peripheral metabolic energy homeostatic pathways. To maintain normal energy balance, neural circuits must integrate feedforward and feedback signals from the internal metabolic environment to orchestrate proper food intake and energy expenditure. These signals include conserved meal and adipocyte cues such as glucose and leptin, respectively, in addition to more novel players including brain-derived neurotrophic factor (BDNF). In particular, BDNF's two receptors, tropomyosin related kinase B (TrkB) and p75 neurotrophin receptor (p75NTR), are increasingly appreciated to be involved in whole body energy homeostasis. At times, these two receptors even seem to functionally oppose one another's actions, providing the framework for a potential neurotrophin mediated energy regulatory axis, which we explore further here.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Metabolismo Energético , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase , Humanos , Transporte Proteico
15.
Curr Biol ; 30(2): 196-208.e8, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902720

RESUMO

The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.


Assuntos
Dopamina/fisiologia , Transdução de Sinais , Núcleo Supraquiasmático/fisiologia , Aumento de Peso/fisiologia , Animais , Ingestão de Alimentos , Comportamento Alimentar , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Recompensa , Aumento de Peso/genética
17.
Yale J Biol Med ; 92(2): 271-281, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249488

RESUMO

Circadian rhythms, or biological oscillations of approximately 24 hours, impact almost all aspects of our lives by regulating the sleep-wake cycle, hormone release, body temperature fluctuation, and timing of food consumption. The molecular machinery governing these rhythms is similar across organisms ranging from unicellular fungi to insects, rodents, and humans. Circadian entrainment, or temporal synchrony with one's environment, is essential for survival. In mammals, the central circadian pacemaker is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and mediates entrainment to environmental conditions. While the light:dark cycle is the primary environmental cue, arousal-inducing, non-photic signals such as food consumption, exercise, and social interaction are also potent synchronizers. Many of these stimuli enhance dopaminergic signaling suggesting that a cohesive circadian physiology depends on the relationship between circadian clocks and the neuronal circuits responsible for detecting salient events. Here, we review the inner workings of mammalian circadian entrainment, and describe the health consequences of circadian rhythm disruptions with an emphasis on dopamine signaling.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiopatologia , Animais , Dopamina/metabolismo , Humanos , Fotoperíodo , Núcleo Supraquiasmático/metabolismo
18.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2415-2427, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943398

RESUMO

Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparß oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ritmo Circadiano/genética , Canais de Cátion TRPM/genética , Termogênese/genética , Tecido Adiposo Marrom/crescimento & desenvolvimento , Animais , Metabolismo Energético/genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Camundongos , Camundongos Knockout , Sensação Térmica/genética
19.
Curr Biol ; 27(16): 2465-2475.e3, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28781050

RESUMO

Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors.


Assuntos
Relógios Circadianos/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/fisiologia , Núcleo Supraquiasmático/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...