Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Radiol Open ; 8: 100390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926727

RESUMO

BACKGROUND: To estimate the diagnostic value of dynamic magnetic resonance imaging (MRI) for the assessment of the temporomandibular joint (TMJ) compared to standard static MRI sequences in patients with TMJ dysfunction (TMD). METHODS AND MATERIALS: This retrospective study included 71 patients with clinical diagnose of TMD. We acquired 5 static T1- and T2-weighted sequences in parasagittal and paracoronal views and one dynamic sequence (trueFISP) in parasagittal view for each TMJ. Image analysis included evaluation of morphology and function of intra-articular structures and rating of the dynamic images as more, equally, or less informative compared to static MRI sequences. RESULTS: Mean age was 35.0 ± 14.7 years and 50/71 (70.4%) were female. 127/142 (89.4%) TMJs were of diagnostic quality. 42/127 (33.1%) TMJs showed no disc displacement (DD), 56 (44.1%) had DD with disc reduction (DDwR), and 29 (22.8%) had DD without disc reduction (DDwoR). In 38/127 (29.9%) TMJs, dynamic images were rated "more informative", in 84/127 (66.2%) "equally informative", and in 5/127 (3.9%) "less informative" compared to solely static images. Overall, 27/71 (38.0%) patients benefited from additional dynamic sequences compared to solely static images. Dynamic images were "more informative" in TMJs with DDwR (23/56 [41.1%], p < 0.001) and in TMJs with DDwoR (13/29 [44.8%], p = 0.007), while it had no beneficial value for TMJ without DD. For evaluation of joint effusion, static T2-weighted images were rated better in 102/127 (80.3%) TMJs compared to dynamic images (<0.001). CONCLUSION: Dynamic MRI sequences are beneficial for the evaluation of morphology and function of the TMJ compared to static sequences, especially in patients with temporomandibular disc displacement.

2.
BMC Cancer ; 17(1): 273, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412973

RESUMO

BACKGROUND: Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. METHODS: We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. RESULTS: We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. CONCLUSIONS: DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Citosina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Transcrição/metabolismo
3.
Oncotarget ; 8(24): 38668-38681, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28454104

RESUMO

Despite advances in cancer diagnosis and treatment strategies, robust prognostic signatures remain elusive in most cancers. Cell proliferation has long been recognized as a prognostic marker in cancer, but the generation of comprehensive, publicly available datasets allows examination of the links between cell proliferation and cancer characteristics such as mutation rate, stage, and patient outcomes. Here we explore the role of cell proliferation across 19 cancers (n = 6,581 patients) by using tissue-based RNA sequencing data from The Cancer Genome Atlas Project and calculating a 'proliferative index' derived from gene expression associated with Proliferating Cell Nuclear Antigen (PCNA) levels. This proliferative index is significantly associated with patient survival (Cox, p-value < 0.05) in 7 of 19 cancers, which we have defined as "proliferation-informative cancers" (PICs). In PICs, the proliferative index is strongly correlated with tumor stage and nodal invasion. PICs demonstrate reduced baseline expression of proliferation machinery relative to non-PICs. Additionally, we find the proliferative index is significantly associated with gross somatic mutation burden (Spearman, p = 1.76 x 10-23) as well as with mutations in individual driver genes. This analysis provides a comprehensive characterization of tumor proliferation indices and their association with disease progression and prognosis in multiple cancer types and highlights specific cancers that may be particularly susceptible to improved targeting of this classic cancer hallmark.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/mortalidade , Neoplasias/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Prognóstico , Proteína Reelina , Análise de Sequência de RNA/métodos , Taxa de Sobrevida , Células Tumorais Cultivadas
4.
IEEE Trans Vis Comput Graph ; 20(12): 2476-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356961

RESUMO

Interactions between atoms have a major influence on the chemical properties of molecular systems. While covalent interactions impose the structural integrity of molecules, noncovalent interactions govern more subtle phenomena such as protein folding, bonding or self assembly. The understanding of these types of interactions is necessary for the interpretation of many biological processes and chemical design tasks. While traditionally the electron density is analyzed to interpret the quantum chemistry of a molecular system, noncovalent interactions are characterized by low electron densities and only slight variations of them--challenging their extraction and characterization. Recently, the signed electron density and the reduced gradient, two scalar fields derived from the electron density, have drawn much attention in quantum chemistry since they enable a qualitative visualization of these interactions even in complex molecular systems and experimental measurements. In this work, we present the first combinatorial algorithm for the automated extraction and characterization of covalent and noncovalent interactions in molecular systems. The proposed algorithm is based on a joint topological analysis of the signed electron density and the reduced gradient. Combining the connectivity information of the critical points of these two scalar fields enables to visualize, enumerate, classify and investigate molecular interactions in a robust manner. Experiments on a variety of molecular systems, from simple dimers to proteins or DNA, demonstrate the ability of our technique to robustly extract these interactions and to reveal their structural relations to the atoms and bonds forming the molecules. For simple systems, our analysis corroborates the observations made by the chemists while it provides new visual and quantitative insights on chemical interactions for larger molecular systems.


Assuntos
Gráficos por Computador , DNA/ultraestrutura , Modelos Moleculares , Conformação Molecular , Proteínas/ultraestrutura , Fenômenos Químicos , Biologia Computacional , Estrutura Secundária de Proteína
5.
IEEE Trans Vis Comput Graph ; 20(12): 2585-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356972

RESUMO

Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.

6.
IEEE Trans Vis Comput Graph ; 20(12): 2595-603, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356973

RESUMO

Morse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain. The segmentation constrains the MS complex computation guaranteeing that boundaries in the segmentation are captured as separatrices of the MS complex. We demonstrate the utility and versatility of our approach with two applications. First, we use streamline integration to determine numerically computed basins/mountains and use the resulting segmentation as an input to our algorithm. This strategy enables the incorporation of prior flow path knowledge, effectively resulting in an MS complex that is as geometrically accurate as the employed numerical integration. Our second use case is motivated by the observation that often the data itself does not explicitly contain features known to be present by a domain expert. We introduce edit operations for MS complexes so that a user can directly modify their features while maintaining all the advantages of a robust topology-based representation.

7.
J Struct Biol ; 177(1): 135-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21907807

RESUMO

Cryo-electron tomography allows to visualize individual actin filaments and to describe the three-dimensional organization of actin networks in the context of unperturbed cellular environments. For a quantitative characterization of actin filament networks, the tomograms must be segmented in a reproducible manner. Here, we describe an automated procedure for the segmentation of actin filaments, which combines template matching with a new tracing algorithm. The result is a set of lines, each one representing the central line of a filament. As demonstrated with cryo-tomograms of cellular actin networks, these line sets can be used to characterize filament networks in terms of filament length, orientation, density, stiffness (persistence length), or the occurrence of branching points.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Algoritmos , Animais , Linhagem Celular , Microscopia Crioeletrônica/métodos , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/isolamento & purificação , Elétrons , Processamento de Imagem Assistida por Computador , Ratos
8.
IEEE Trans Vis Comput Graph ; 17(12): 2045-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034322

RESUMO

This paper introduces a novel importance measure for critical points in 2D scalar fields. This measure is based on a combination of the deep structure of the scale space with the well-known concept of homological persistence. We enhance the noise robust persistence measure by implicitly taking the hill-, ridge- and outlier-like spatial extent of maxima and minima into account. This allows for the distinction between different types of extrema based on their persistence at multiple scales. Our importance measure can be computed efficiently in an out-of-core setting. To demonstrate the practical relevance of our method we apply it to a synthetic and a real-world data set and evaluate its performance and scalability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...