Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(2): 733-755, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32385587

RESUMO

Previous clinical and experimental evidence strongly supports a breast cancer-promoting function of the lysosomal protease cathepsin B. However, the cathepsin B-dependent molecular pathways are not completely understood. Here, we studied the cathepsin-mediated secretome changes in the context of the MMTV-PyMT breast cancer mouse model. Employing the cell-conditioned media from tumor-macrophage co-cultures, as well as tumor interstitial fluid obtained by a novel strategy from PyMT mice with differential cathepsin B expression, we identified an important proteolytic and lysosomal signature, highlighting the importance of this organelle and these enzymes in the tumor micro-environment. The Cellular Repressor of E1A Stimulated Genes 1 (CREG1), a secreted endolysosomal glycoprotein, displayed reduced abundance upon over-expression of cathepsin B as well as increased abundance upon cathepsin B deletion or inhibition. Moreover, it was cleaved by cathepsin B in vitro. CREG1 reportedly could act as tumor suppressor. We show that treatment of PyMT tumor cells with recombinant CREG1 reduced proliferation, migration, and invasion; whereas, the opposite was observed with reduced CREG1 expression. This was further validated in vivo by orthotopic transplantation. Our study highlights CREG1 as a key player in tumor-stroma interaction and suggests that cathepsin B sustains malignant cell behavior by reducing the levels of the growth suppressor CREG1 in the tumor microenvironment.


Assuntos
Neoplasias da Mama/patologia , Catepsina B/metabolismo , Invasividade Neoplásica/patologia , Proteínas Repressoras/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Catepsina B/genética , Proliferação de Células , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Camundongos , Invasividade Neoplásica/genética , Proteínas Repressoras/genética , Células Tumorais Cultivadas , Microambiente Tumoral , Regulação para Cima
2.
Sci Rep ; 10(1): 768, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964943

RESUMO

Current treatment options for influenza virus infections in humans are limited and therefore the development of novel antivirals is of high priority. Inhibiting influenza virus attachment to host cells would provide an early and efficient block of the infection and thus, receptor analogs have been considered as options for antiviral treatment. Here, we describe the rapid and efficient synthesis of PAMAM dendrimers conjugated with either 3'-sialyllactose (3SL) or 6'-sialyllactose (6SL) and their potential to inhibit a diverse range of human and avian influenza virus strains. We show in a hemagglutination inhibition (HAI) assay that human IAV strains can be inhibited by (6SL)- and to a lesser extent also by (3SL)-conjugated PAMAM dendrimers. In contrast, avian strains could only be inhibited by (3SL)-conjugated dendrimers. Importantly, the differential sensitivities of human and avian IAV to the two types of sialyllactose-conjugated dendrimers could be confirmed in cell-based neutralization assays. Based on our findings, we suggest to further develop both, (3SL)- and (6SL)-conjugated PAMAM dendrimers, as influenza virus inhibitors.


Assuntos
Antivirais/síntese química , Dendrímeros/química , Vírus da Influenza A/efeitos dos fármacos , Lactose/análogos & derivados , Oligossacarídeos/síntese química , Animais , Antivirais/química , Antivirais/farmacologia , Aves , Embrião de Galinha , Cães , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A/imunologia , Lactose/síntese química , Lactose/química , Lactose/farmacologia , Células Madin Darby de Rim Canino , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...