Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678896

RESUMO

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a relentlessly progressive neurodegenerative disorder caused by mutations in the C19orf12 gene. C19orf12 has been implicated in playing a role in lipid metabolism, mitochondrial function, and autophagy, however, the precise functions remain unknown. To identify new robust cellular targets for small compound treatments, we evaluated reported mitochondrial function alterations, cellular signaling, and autophagy in a large cohort of MPAN patients and control fibroblasts. We found no consistent alteration of mitochondrial functions or cellular signaling messengers in MPAN fibroblasts. In contrast, we found that autophagy initiation is consistently impaired in MPAN fibroblasts and show that C19orf12 expression correlates with the amount of LC3 puncta, an autophagy marker. Finally, we screened 14 different autophagy modulators to test which can restore this autophagy defect. Amongst these compounds, carbamazepine, ABT-737, LY294002, oridonin, and paroxetine could restore LC3 puncta in the MPAN fibroblasts, identifying them as novel potential therapeutic compounds to treat MPAN. In summary, our study confirms a role for C19orf12 in autophagy, proposes LC3 puncta as a functionally robust and consistent readout for testing compounds, and pinpoints potential therapeutic compounds for MPAN.

2.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087354

RESUMO

The nicotinamide adenine dinucleotide (NAD+/NADH) pair is a cofactor in redox reactions and is particularly critical in mitochondria as it connects substrate oxidation by the tricarboxylic acid (TCA) cycle to adenosine triphosphate generation by the electron transport chain (ETC) and oxidative phosphorylation. While a mitochondrial NAD+ transporter has been identified in yeast, how NAD enters mitochondria in metazoans is unknown. Here, we mine gene essentiality data from human cell lines to identify MCART1 (SLC25A51) as coessential with ETC components. MCART1-null cells have large decreases in TCA cycle flux, mitochondrial respiration, ETC complex I activity, and mitochondrial levels of NAD+ and NADH. Isolated mitochondria from cells lacking or overexpressing MCART1 have greatly decreased or increased NAD uptake in vitro, respectively. Moreover, MCART1 and NDT1, a yeast mitochondrial NAD+ transporter, can functionally complement for each other. Thus, we propose that MCART1 is the long sought mitochondrial transporter for NAD in human cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...