Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 6(5): 101036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694958

RESUMO

Background & Aims: Chronic liver disease (CLD) remains a global health issue associated with a significant disease burden. Liver fibrosis, a hallmark of CLD, is characterised by the activation of hepatic stellate cells (HSCs) that gain profibrotic characteristics including increased production of extracellular matrix protein. Currently, no antifibrotic therapies are available clinically, in part because of the lack of HSC-specific drug targets. Here, we aimed to identify HSC-specific membrane proteins that can serve as targets for antifibrotic drug development. Methods: Small interfering RNA-mediated knockdown of GPR176 was used to assess the in vitro function of GPR176 in HSCs and in precision cut liver slices (PCLS). The in vivo role of GPR176 was assessed using the carbon tetrachloride (CCl4) and common bile duct ligation (BDL) models in wild-type and GPR176 knockout mice. GPR176 in human CLD was assessed by immunohistochemistry of diseased human livers and RNA expression analysis in human primary HSCs and transcriptomic data sets. Results: We identified Gpr176, an orphan G-protein coupled receptor, as an HSC-enriched activation associated gene. In vitro, Gpr176 is strongly induced upon culture-induced and hepatocyte-damage-induced activation of primary HSCs. Knockdown of GPR176 in primary mouse HSCs or PCLS cultures resulted in reduced fibrogenic characteristics. Absence of GPR176 did not influence liver homeostasis, but Gpr176-/- mice developed less severe fibrosis in CCl4 and BDL fibrosis models. In humans, GPR176 expression was correlated with in vitro HSC activation and with fibrosis stage in patients with CLD. Conclusions: GPR176 is a functional protein during liver fibrosis and reducing its activity attenuates fibrogenesis. These results highlight the potential of GPR176 as an HSC-specific antifibrotic candidate to treat CLD. Impact and implications: The lack of effective antifibrotic drugs is partly attributed to the insufficient knowledge about the mechanisms involved in the development of liver fibrosis. We demonstrate that the G-protein coupled receptor GPR176 contributes to fibrosis development. Since GPR176 is specifically expressed on the membrane of activated hepatic stellate cells and is linked with fibrosis progression in humans, it opens new avenues for the development of targeted interventions.

2.
Clin Oral Investig ; 28(5): 270, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658396

RESUMO

OBJECTIVES: 8-Hydroxideoxyguanosine (8-OHdG) is a marker of oxidative stress, and Forkhead Box-O1 (FOXO1) is a transcription factor and signaling integrator in cell and tissue homeostasis. This study aims to determine FOXO1 and 8-OHdG levels in serum and saliva samples of periodontitis patients and to evaluate their relationship with clinical periodontal parameters. MATERIALS AND METHODS: Twenty healthy individuals, twenty generalized Stage III Grade B periodontitis patients, and nineteen generalized Stage III Grade C periodontitis patients were included in the study. Clinical periodontal parameters (plaque index (PI), probing depth (PD), bleeding on probing (BOP), and clinical attachment level (CAL)) were recorded. Salivary and serum 8-OHdG and FOX-O1 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS: Clinical periodontal parameters showed a statistically significant increase in periodontitis groups compared to the control group (p < 0.05). 8-OHdG salivary levels were significantly higher in both periodontitis groups compared to the control group. The salivary FOXO1 levels were significantly lower in both periodontitis groups compared to the control group. Salivary FOXO1 level had a low-grade negative correlation with BOP and salivary 8-OHdG level. CONCLUSIONS: While reactive oxygen species increase in periodontal inflammation, low expression of FOXO1, an important transcription factor for antioxidant enzymes, supports that this molecule plays a vital role in tissue destruction, and FOXO1 can be seen as a potential immune modulator. CLINICAL RELEVANCE: The role of FOXO1 in supporting antioxidant defense may suggest that FOXO1 is a candidate target for periodontitis treatment.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Proteína Forkhead Box O1 , Estresse Oxidativo , Índice Periodontal , Periodontite , Saliva , Humanos , Proteína Forkhead Box O1/metabolismo , Masculino , Saliva/metabolismo , Saliva/química , Feminino , Adulto , Periodontite/metabolismo , Índice de Placa Dentária , Pessoa de Meia-Idade , Estudos de Casos e Controles
3.
J Am Chem Soc ; 137(37): 11984-95, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26356575

RESUMO

This study combines theory and experiment to determine the kinetically relevant steps and site requirements for deoxygenation of alkanols and alkanals. These reactants deoxygenate predominantly via decarbonylation (C-C cleavage) instead of C-O hydrogenolysis on Ir, Pt, and Ru, leading to strong inhibition effects by chemisorbed CO (CO*). C-C cleavage occurs via unsaturated species formed in sequential quasi-equilibrated dehydrogenation steps, which replace C-H with C-metal bonds, resulting in strong inhibition by H2, also observed in alkane hydrogenolysis. C-C cleavage occurs in oxygenates only at locations vicinal to the C═O group in RCCO* intermediates, because such adjacency weakens C-C bonds, which also leads to much lower activation enthalpies for oxygenates than hydrocarbons. C-O hydrogenolysis rates are independent of H2 pressure and limited by H*-assisted C-O cleavage in RCHOH* intermediates on surfaces with significant coverages of CO* formed in decarbonylation events. The ratio of C-O hydrogenolysis to decarbonylation rates increased almost 100-fold as the Ir cluster size increased from 0.7 to 7 nm; these trends reflect C-O hydrogenolysis reactions favored on terrace sites, while C-C hydrogenolysis prefers sites with lower coordination, because of the relative size of their transition states and the crowded nature of CO*-covered surfaces. C-O hydrogenolysis becomes the preferred deoxygenation route on Cu-based catalysts, thus avoiding CO inhibition effects. The relative rates of C-O and C-C cleavage on these metals depend on their relative ability to bind C atoms, because C-C cleavage transitions states require an additional M-C attachment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA