Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(5): e26, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33330921

RESUMO

Upstream open reading frame (uORF) translation disrupts scanning 43S flux on mRNA and modulates main open reading frame (mORF) translation efficiency. Current tools, however, have limited access to ribosome dynamics in both upstream and main ORFs of an mRNA. Here, we develop a new two-color in vitro fluorescence assay, Smart-ORF, that monitors individual uORF and mORF translation events in real-time with single-molecule resolution. We demonstrate the utility of Smart-ORF by applying it to uORF-encoded arginine attenuator peptide (AAP)-mediated translational regulation. The method enabled quantification of uORF and mORF initiation efficiencies, 80S dwell time, polysome formation, and the correlation between uORF and mORF translation dynamics. Smart-ORF revealed that AAP-mediated 80S stalling in the uORF stimulates the uORF initiation efficiency and promotes clustering of slower uORF-translating ribosomes. This technology provides a new tool that can reveal previously uncharacterized dynamics of uORF-containing mRNA translation.


Assuntos
Fases de Leitura Aberta , Biossíntese de Proteínas , Ribossomos/metabolismo , Imagem Individual de Molécula/métodos , Arginina/metabolismo , Sistema Livre de Células , Regulação da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo
2.
J Vis Exp ; (163)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33016943

RESUMO

Cap-dependent protein synthesis is the predominant translation pathway in eukaryotic cells. While various biochemical and genetic approaches have allowed extensive studies of cap-dependent translation and its regulation, high resolution kinetic characterization of this translation pathway is still lacking. Recently, we developed an in vitro assay to measure cap-dependent translation kinetics with single-molecule resolution. The assay is based on fluorescently labeled antibody binding to nascent epitope-tagged polypeptide. By imaging the binding and dissociation of antibodies to and from nascent peptide-ribosome-mRNA complexes, the translation progression on individual mRNAs can be tracked. Here, we present a protocol for establishing this assay, including mRNA and PEGylated slide preparations, real-time imaging of translation, and analysis of single molecule trajectories. This assay enables tracking of individual cap-dependent translation events and resolves key translation kinetics, such as initiation and elongation rates. The assay can be widely applied to distinct translation systems and should broadly benefit in vitro studies of cap-dependent translation kinetics and translational control mechanisms.


Assuntos
Células Eucarióticas/metabolismo , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Imagem Individual de Molécula/métodos , Humanos , Cinética , Capuzes de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética
3.
Nucleic Acids Res ; 48(1): e6, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722415

RESUMO

Eukaryotic mRNAs are predominantly translated via the cap-dependent pathway. Initiation is a rate-limiting step in cap-dependent translation and is the main target of translational control mechanisms. There is a lack of high-resolution techniques for characterizing the cap-dependent initiation kinetics. Here, we report an in vitro single-molecule assay that allows characterization of both initiation and peptide chain elongation kinetics for cap-dependent translation. Surprisingly, the histogram of the first-round initiation time is highly asymmetrical and spans a large time range that is several-fold greater than the average peptide synthesis time in translation reactions with a firefly luciferase-encoding mRNA. Both the histogram and single-molecule trajectories reveal an unexpected high-degree of asynchrony in translation activity between mRNA molecules. Furthermore, by inserting a small stem-loop (ΔG = -4.8 kcal/mol) in the middle of the mRNA 5' untranslated region (UTR), our assay robustly detects small changes in budding yeast initiation kinetics, which could not be resolved by bulk luminescence kinetics. Lastly, we demonstrate the general applicability of this assay to distinct cell-free translation systems by using extracts prepared from budding yeast, wheat germ, and rabbit reticulocyte lysates. This assay should facilitate mechanistic studies of eukaryotic cap-dependent translation initiation and translational control.


Assuntos
Bioensaio , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA/genética , Ribossomos/genética , Imagem Individual de Molécula/métodos , Animais , Carbocianinas/química , Carbocianinas/metabolismo , Misturas Complexas/química , Misturas Complexas/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Cinética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Capuzes de RNA/metabolismo , Coelhos , Reticulócitos/química , Reticulócitos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Triticum/química , Triticum/metabolismo
4.
J Immunol ; 189(5): 2089-93, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22865915

RESUMO

In activated macrophages, the anti-inflammatory cytokine IL-10 inhibits expression of molecules that propagate inflammation in a manner that depends on transcription factor STAT3. Expression of IL-10 is regulated posttranscriptionally by the RNA-binding protein tristetraprolin (TTP), which destabilizes IL-10 mRNA in activated macrophages. Using LPS-activated bone marrow-derived murine macrophages, we demonstrate that TTP is a negative regulator of the IL-10/STAT3 anti-inflammatory response. LPS-stimulated TTP-deficient macrophages overproduced IL-10, contained increased amounts of activated STAT3, and showed reduced expression of inflammatory cytokines, including cytokines encoded by TTP target mRNAs. Thus, in LPS-stimulated TTP-deficient macrophages, increased IL-10/STAT3 anti-inflammatory control was dominant over the mRNA stabilization of specific TTP targets. The TTP gene promoter contains a conserved STAT3 binding site, and IL-10 induces STAT3 recruitment to this site. Correspondingly, STAT3 was required for efficient IL-10-induced TTP expression. Hence, by inducing TTP expression, STAT3 activates a negative regulatory loop that controls the IL-10/STAT3 anti-inflammatory response.


Assuntos
Citocinas/biossíntese , Retroalimentação Fisiológica/fisiologia , Interleucina-10/fisiologia , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Tristetraprolina/biossíntese , Animais , Células Cultivadas , Citocinas/genética , Regulação para Baixo/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estabilidade de RNA/imunologia , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/imunologia , Tristetraprolina/deficiência
5.
Mol Cell ; 20(3): 449-60, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16285926

RESUMO

Saccharomyces cerevisiae CPA1 mRNA contains an upstream open reading frame (uORF) encoding the arginine attenuator peptide (AAP). Negative translational regulation of CPA1 occurs when the nascent AAP responds to arginine (Arg) by stalling ribosomes at the uORF termination codon. CPA1 expression is also controlled by nonsense-mediated mRNA decay (NMD). Using wild-type and decay-defective strains expressing CPA1-LUC, we determined how this uORF contributes to NMD control. Arg addition to media rapidly destabilized the CPA1 transcript in wild-type but not upf1delta cells. The wild-type uORF exerted translational control and induced NMD of CPA1-LUC; the mutated D13N uORF, which eliminates stalling and regulation, did not. Thus, regulation by NMD was not governed simply by ribosomes encountering the uORF terminator but appeared dependent on the AAP's ribosome-stalling ability. Improving the D13N uORF initiation context also promoted NMD. Hence, NMD appears to be triggered by increased ribosomal occupancy of the uORF termination codon.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/biossíntese , Códon de Terminação/fisiologia , Fases de Leitura Aberta/fisiologia , Biossíntese de Proteínas/fisiologia , Estabilidade de RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/fisiologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Deleção de Genes , RNA Helicases/genética , RNA Helicases/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
6.
Methods ; 26(2): 105-14, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12054887

RESUMO

The ability to map the position of ribosomes and their associated factors on mRNAs is critical for an understanding of translation mechanisms. Earlier approaches to monitoring these important cellular events characterized nucleotide sequences rendered nuclease-resistant by ribosome binding. While these approaches furthered our understanding of translation initiation and ribosome pausing, the pertinent techniques were technically challenging and not widely applied. Here we describe an alternative assay for determining the mRNA sites at which ribosomes or other factors are bound. This approach uses primer extension inhibition, or "toeprinting," to map the 3' boundaries of mRNA-associated complexes. This methodology, previously used to characterize initiation mechanisms in prokaryotic and eukaryotic systems, is used here to gain an understanding of two interesting translational regulatory phenomena in the fungi Neurospora crassa and Saccharomyces cerevisiae: (a) regulation of translation in response to arginine concentration by an evolutionarily conserved upstream open reading frame, and (b) atypical termination events that occur as a consequence of the presence of premature stop codons.


Assuntos
Genes Fúngicos/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Sequência de Bases , Cromatografia/métodos , Códon de Terminação , Dados de Sequência Molecular , Neurospora crassa/metabolismo , Nitrogênio/metabolismo , Fases de Leitura Aberta , Saccharomyces cerevisiae/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA