Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730821

RESUMO

The aim of this study is to analyze the effect of the addition of TiO2 nanoparticles (NTs) on the physical and mechanical properties, as well as the microstructural changes, of cementitious composites containing partially substituted natural aggregates (NAs) with aggregates derived from the following four recycled materials: glass (RGA), brick (RGB), blast-furnace slag (GBA), and recycled textolite waste with WEEE (waste from electrical and electronic equipment) as the primary source (RTA), in line with sustainable construction practices. The research methodology included the following phases: selection and characterization of raw materials, formulation design, experimental preparation and testing of specimens using standardized methods specific to cementitious composite mortars (including determination of apparent density in the hardened state, mechanical strength in compression, flexure, and abrasion, and water absorption by capillarity), and structural analysis using specialized techniques (scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS)). The analysis and interpretation of the results focused primarily on identifying the effects of NT addition on the composites. Results show a decrease in density resulting from replacing NAs with recycled aggregates, particularly in the case of RGB and RTA. Conversely, the introduction of TiO2 nanoparticles resulted in a slight increase in density, ranging from 0.2% for RTA to 7.4% for samples containing NAs. Additionally, the introduction of TiO2 contributes to improved compressive strength, especially in samples containing RTA, while flexural strength benefits from a 3-4% TiO2 addition in all composites. The compressive strength ranged from 35.19 to 70.13 N/mm2, while the flexural strength ranged from 8.4 to 10.47 N/mm2. The abrasion loss varied between 2.4% and 5.71%, and the water absorption coefficient varied between 0.03 and 0.37 kg/m2m0.5, the variations being influenced by both the nature of the aggregates and the amount of NTs added. Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS) analysis showed that TiO2 nanoparticles are uniformly distributed in the cementitious composites, mainly forming CSH gel. TiO2 nanoparticles act as nucleating agents during early hydration, as confirmed by EDS spectra after curing.

2.
Materials (Basel) ; 16(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37763466

RESUMO

Soil pollution with heavy metals is a problem for the whole geosystem. The aim of the research is to identify new solutions for extracting heavy metals from polluted soils so that they can be further exploited. To this end, investigations of the physicochemical characteristics of the soil sample under study were carried out. Following the analyses, the soil was characterised as lute-coarse sand (UG) with a strongly acidic pH (4.67), a hygroscopicity coefficient (CH = 4.8% g/g), and a good supply of nutrients: nitrogen (Nt): 0.107%; mobile phosphorus (PAL): 6 mg kg-1 and mobile potassium (KAL): 26 mg kg-1, but is low in humus (2.12%). The metal content of the soil was determined by atomic absorption spectrometry (AAS), and the analyses showed high concentrations of metals (Pb: 27,660 mg kg-1; Cu: 5590 mg kg-1; Zn: 2199 mg kg-1; Cd: 11.68 mg kg-1; Cr: 146 mg kg-1). The removal of metals (Pb, Cu, Zn, Cd, and Cr) from polluted soil by different extraction agents (water, humus, malic acid, chitosan, and gluconic acid) was investigated. Metal extraction experiments were carried out in a continuous orbital rotation-oscillation stirrer at a solid/liquid/ (S/L ratio; g:mL) of 1:4, at two concentrations of extraction solution (1% and 3%), and at different stirring times (2, 4, 6, and 8 h). The yield of the extraction process is very low for all proposed extraction solutions. The maximum values of extraction efficiency are: 0.5% (Pb); 3.28% (Zn); and 5.72% (Cu). Higher values were obtained in the case of Cr (11.97%) in the variant of using humus 3% as an extraction solution at a stirring time of 6 h. In the investigated experimental conditions, the best removal efficiencies were obtained in the case of cadmium (26.71%) when using a 3% malic acid solution. In conclusion, it is considered that, from case to case, the type of extraction solution as well as the nature of the metal influence the mechanism of the depollution process, i.e., the capacity of the fine soil granules to free themselves from the pollutant metal that has adhered to them, and further research is considered necessary in the future.

3.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234304

RESUMO

The use of waste from industrial activities is of particular importance for environmental protection. Fly ash has a high potential in the production of construction materials. In the present study, the use of fly ash in the production of geopolymer paste and the effect of Fe2O3, MgO and molarity of NaOH solution on the mechanical strength of geopolymer paste are presented. Samples resulting from the heat treatment of the geopolymer paste were subjected to mechanical tests and SEM, EDS and XRD analyses. Samples were obtained using 6 molar and 8 molar NaOH solution with and without the addition of Fe2O3 and MgO. Samples obtained using a 6 molar NaOH solution where Fe2O3 and MgO were added had higher mechanical strengths compared to the other samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...