Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958079

RESUMO

Rodents have been the preferred models for the evaluation of the toxicity of pollutants and drugs and their genotoxic effects, including sperm shape abnormalities. The scientific literature is dominated by studies conducted with model animals in laboratory conditions, but a generally accepted and standardized protocol addressing the optimal number of sperm cells to count is still lacking. In this study, we reviewed the literature regarding the number of counted sperm cells in such assessments, published from 1969 to 2023. To infer the number of counts providing the best cost/benefit regarding the robustness of the assay results, a new dataset involving the analysis of two populations of wild rodents was produced. We evaluated the frequency of sperm shape abnormalities in a total of 50 wild brown rats (Rattus norvegicus) captured in two port cities, aiming to detect the impact of differential sperm cell counts in the obtained results. During necropsy, the fresh epididymis tail of adult male rats was excised, and sperm cells were fixated in slides. For each animal, a total of 300, 500, 1000, and 2000 cells were sequentially counted, and head abnormalities were registered. Counting 300 sperm cells failed to detect significant differences between groups and 500 counts resulted in marginally significant differences. Only when 1000 or 2000 sperm cells were counted, significant differences emerged between groups. We propose that studies addressing sperm shape abnormalities should standardize counts to an optimal value of 1000 cells per animal, warranting robust statistical results while providing the best compromise concerning labor time.

2.
Cytogenet Genome Res ; 162(4): 214-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36455542

RESUMO

The Western European house mouse is chromosomally diverse, with diploid karyotypes ranging from the standard 40 telocentric chromosomes down to 22 chromosomes. Karyotypes are modified through Robertsonian (Rb) fusion of 2 telocentrics into a single metacentric, occurring repeatedly with fixation, and whole-arm reciprocal translocations (WARTs) generating additional novel karyotypes. Over 100 metacentric populations (chromosomal races) have been identified, geographically clustered into "systems." Chromosomal races within systems often hybridise, and new races may emerge through this hybridisation ("zonal raciation"). We wished to determine the degree to which chromosomal races in a system have evolved independently or share common ancestry. Recombination between chromosomes from hybridising chromosomal races can erase the signals associated with a particular metacentric of interest, making inferences challenging. However, reduced recombination near the centromeres of chromosomal race-specific metacentrics makes centromere-adjacent markers ideal for solving this problem. For the Northern Italy System (NIS), we used microsatellite markers near the centromere to test previous hypotheses about evolutionary relationships of 5 chromosomal races. We chose markers from chromosomes 1, 3, 4, and 6, all of which comprise one arm of a metacentric in at least 2 of these NIS metacentric populations. We used estimates of FST and RST, as well as principal components analyses and neighbour-joining phylogenetic analyses, to infer evolutionary relationships between these 5 chromosomal races and neighbouring mice with the standard karyotype. We showed that the metacentric populations form a single grouping distinct from the standard populations, consistent with their common origin and consistent with a parsimonious sequence of chromosomal rearrangements to explain the relationship of the chromosomal races. That origin and evolution of the chromosomal races in the system would have involved Rb fusions, explaining the occurrence of chromosomal races with diploid numbers as low as 22. However, WARTs and zonal raciation have also been inferred, and the rare occurrence of chromosome 1 in different metacentrics in closely related chromosomal races is almost certainly explained by a WART. Our results with centromeric microsatellites are consistent with the above scenarios, illustrating, once again, the value of markers in the centromeric region to test evolutionary hypotheses in house mouse chromosomal systems.


Assuntos
Centrômero , Translocação Genética , Camundongos , Animais , Humanos , Filogenia , Centrômero/genética , Cariotipagem , Cariótipo , Translocação Genética/genética , Itália
3.
Animals (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070357

RESUMO

The frequent carriage of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), by wild animals along with its zoonotic potential poses a public health problem. Furthermore, the repeated detection of the mecA gene homologue, mecC, in wildlife raises the question whether these animals may be a reservoir for mecC-MRSA. Thus, we aimed to isolate S. aureus and MRSA from wild rodents living in port areas and to characterize their antimicrobial resistance and genetic lineages. Mouth and rectal swab samples were recovered from 204 wild rodents. The samples were incubated in BHI broth with 6.5% of NaCl and after 24 h at 37 °C the inoculum was seeded onto Baird-Parker agar, Mannitol Salt agar and ORSAB (supplemented with 2 mg/L of oxacillin) plates. Species identification was confirmed by MALDI-TOF MS. The antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion method against 14 antibiotics. The presence of virulence and resistance genes was performed by PCR. The immune evasion cluster (IEC) system was investigated in all S. aureus. All isolates were characterized by MLST, spa- and agr typing. From 204 samples, 38 S. aureus were isolated of which six MRSA were detected. Among the six MRSA isolates, three harbored the mecC gene and the other three, the mecA gene. All mecC-MRSA isolates were ascribed to sequence type (ST) 1945 (which belongs to CC130) and spa-type t1535 whereas the mecA isolates belonged to ST22 and ST36 and spa-types t747 and t018. Twenty-five S. aureus were susceptible to all antibiotics tested. S. aureus isolates were ascribed to 11 MLST and 12 spa-types. S. aureus presents a great diversity of genetic lineages in wild rodents. This is the first report of mecC-MRSA in Portugal.

4.
Genes (Basel) ; 11(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640559

RESUMO

Analysis of contact zones between parapatric chromosomal races can help our understanding of chromosomal divergence and its influence on the speciation process. Monitoring the position and any movement of contact zones can allow particular insights. This study investigates the present (2012-2014) and past (1998-2002) distribution of two parapatric house mouse chromosomal races-PEDC (Estreito da Calheta) and PADC (Achadas da Cruz)-on Madeira Island, aiming to identify changes in the location and width of their contact. We also extended the 1998-2002 sampling area into the range of another chromosomal race-PLDB (Lugar de Baixo). Clinal analysis indicates no major geographic alterations in the distribution and chromosomal characteristics of the PEDC and PADC races but exhibited a significant shift in position of the Rb (7.15) fusion, resulting in the narrowing of the contact zone over a 10+ year period. We discuss how this long-lasting contact zone highlights the role of landscape on mouse movements, in turn influencing the chromosomal characteristics of populations. The expansion of the sampling area revealed new chromosomal features in the north and a new contact zone in the southern range involving the PEDC and PLDB races. We discuss how different interacting mechanisms (landscape resistance, behaviour, chromosomal incompatibilities, meiotic drive) may help to explain the pattern of chromosomal variation at these contacts between chromosomal races.


Assuntos
Cromossomos/genética , Ecossistema , Especiação Genética , Camundongos/genética , Distribuição Animal , Animais , Ilhas , Camundongos/classificação , Camundongos/fisiologia , Filogenia , Isolamento Reprodutivo
5.
Mol Biol Evol ; 36(8): 1686-1700, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004162

RESUMO

One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein-DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


Assuntos
Evolução Molecular , Histona-Lisina N-Metiltransferase/genética , Camundongos/genética , Animais , Variação Genética , Heterozigoto , Filogeografia , Portugal , Seleção Genética , Espanha
6.
J Hered ; 108(1): 25-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729448

RESUMO

The first natural chromosomal variation in the house mouse was described nearly 50 years ago in Val Poschiavo on the Swiss side of the Swiss-Italian border in the Central Eastern Alps. Studies have extended into neighboring Valtellina, and the house mice of the Poschiavo-Valtellina area have been subject to detailed analysis, reviewed here. The maximum extent of this area is 70 km, yet it has 4 metacentric races and the standard 40-chromosome telocentric race distributed in a patchwork fashion. The metacentric races are characterized by highly reduced diploid numbers (2n = 22-26) resulting from Robertsonian fusions, perhaps modified by whole-arm reciprocal translocations. The races hybridize and the whole Poschiavo-Valtellina area can be considered a "hybrid zone." The studies of this area have provided insights into origin of races within hybrid zones, gene flow within hybrid zones and the possibility of speciation in hybrid zones. This provides a case study of how chromosomal rearrangements may impact the genetic structure of populations and their diversification.


Assuntos
Cromossomos de Mamíferos , Variação Genética , Genética Populacional , Hibridização Genética , Animais , Bandeamento Cromossômico , Evolução Molecular , Feminino , Masculino , Camundongos , Modelos Genéticos
7.
Chromosome Res ; 24(2): 271-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048372

RESUMO

The importance of chromosomal rearrangements for speciation can be inferred from studies of genetic exchange between hybridising chromosomal races within species. Reduced fertility or recombination suppression in karyotypic hybrids has the potential to maintain or promote genetic differentiation in genomic regions near rearrangement breakpoints. We studied genetic exchange between two hybridising groups of chromosomal races of house mouse in Upper Valtellina (Lombardy, Italy), using microsatellites. These groups differ by Robertsonian fusions and/or whole-arm reciprocal translocations such that F1 hybrids have a chain-of-five meiotic configuration. Previous studies showed genetic differentiation in two chromosomes in the chain-of-five (10 and 12) close to their centromeres (i.e. the rearrangement breakpoints); we have shown here that the centromeric regions of the other two chromosomes in the chain (2 and 8) are similarly differentiated. The internal chromosomes of the chain (8 and 12) show the greatest differentiation, which may reflect pairing and recombination properties of internal and external elements in a meiotic chain. Importantly, we found that centromeric regions of some non-rearranged chromosomes also showed genetic differentiation between the hybridising groups, indicating a complex interplay between chromosomal rearrangements and other parts of the genome in maintaining or promoting differentiation and potentially driving speciation between chromosomal races.


Assuntos
Especiação Genética , Hibridização Genética/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Recombinação Genética/genética , Animais , Cromossomos/genética , Variação Genética , Genética Populacional , Cariótipo , Camundongos
8.
Mol Biol Evol ; 33(6): 1381-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26882987

RESUMO

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.


Assuntos
Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Masculino , Camundongos , Modelos Genéticos , Mutação , Seleção Genética
9.
Curr Biol ; 24(19): 2295-300, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25242031

RESUMO

Mammalian karyotypes (number and structure of chromosomes) can vary dramatically over short evolutionary time frames. There are examples of massive karyotype conversion, from mostly telocentric (centromere terminal) to mostly metacentric (centromere internal), in 10(2)-10(5) years. These changes typically reflect rapid fixation of Robertsonian (Rb) fusions, a common chromosomal rearrangement that joins two telocentric chromosomes at their centromeres to create one metacentric. Fixation of Rb fusions can be explained by meiotic drive: biased chromosome segregation during female meiosis in violation of Mendel's first law. However, there is no mechanistic explanation of why fusions would preferentially segregate to the egg in some populations, leading to fixation and karyotype change, while other populations preferentially eliminate the fusions and maintain a telocentric karyotype. Here we show, using both laboratory models and wild mice, that differences in centromere strength predict the direction of drive. Stronger centromeres, manifested by increased kinetochore protein levels and altered interactions with spindle microtubules, are preferentially retained in the egg. We find that fusions preferentially segregate to the polar body in laboratory mouse strains when the fusion centromeres are weaker than those of telocentrics. Conversely, fusion centromeres are stronger relative to telocentrics in natural house mouse populations that have changed karyotype by accumulating metacentric fusions. Our findings suggest that natural variation in centromere strength explains how the direction of drive can switch between populations. They also provide a cell biological basis of centromere drive and karyotype evolution.


Assuntos
Centrômero/fisiologia , Evolução Molecular , Cariótipo , Meiose , Camundongos/genética , Animais , Aberrações Cromossômicas , Segregação de Cromossomos , Europa (Continente) , Feminino
10.
Mol Ecol ; 23(8): 1923-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24617968

RESUMO

Island populations provide natural laboratories for studying key contributors to evolutionary change, including natural selection, population size and the colonization of new environments. The demographic histories of island populations can be reconstructed from patterns of genetic diversity. House mice (Mus musculus) inhabit islands throughout the globe, making them an attractive system for studying island colonization from a genetic perspective. Gough Island, in the central South Atlantic Ocean, is one of the remotest islands in the world. House mice were introduced to Gough Island by sealers during the 19th century and display unusual phenotypes, including exceptionally large body size and carnivorous feeding behaviour. We describe genetic variation in Gough Island mice using mitochondrial sequences, nuclear sequences and microsatellites. Phylogenetic analysis of mitochondrial sequences suggested that Gough Island mice belong to Mus musculus domesticus, with the maternal lineage possibly originating in England or France. Cluster analyses of microsatellites revealed genetic membership for Gough Island mice in multiple coastal populations in Western Europe, suggesting admixed ancestry. Gough Island mice showed substantial reductions in mitochondrial and nuclear sequence variation and weak reductions in microsatellite diversity compared with Western European populations, consistent with a population bottleneck. Approximate Bayesian computation (ABC) estimated that mice recently colonized Gough Island (~100 years ago) and experienced a 98% reduction in population size followed by a rapid expansion. Our results indicate that the unusual phenotypes of Gough Island mice evolved rapidly, positioning these mice as useful models for understanding rapid phenotypic evolution.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Ilhas , Camundongos/genética , Animais , Oceano Atlântico , Teorema de Bayes , Tamanho Corporal , Núcleo Celular/genética , DNA Mitocondrial/genética , Marcadores Genéticos , Repetições de Microssatélites , Fenótipo , Filogenia
11.
Trends Genet ; 29(5): 298-308, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23290437

RESUMO

The long-distance movements made by humans through history are quickly erased by time but can be reconstructed by studying the genetic make-up of organisms that travelled with them. The phylogeography of the western house mouse (Mus musculus domesticus), whose current widespread distribution around the world has been caused directly by the movements of (primarily) European people, has proved particularly informative in a series of recent studies. The geographic distributions of genetic lineages in this commensal have been linked to the Iron Age movements within the Mediterranean region and Western Europe, the extensive maritime activities of the Vikings in the 9th to 11th centuries, and the colonisation of distant landmasses and islands by the Western European nations starting in the 15th century. We review here recent insights into human history based on phylogeographic studies of mice and other species that have travelled with humans, and discuss how emerging genomic methodologies will increase the precision of these inferences.


Assuntos
Variação Genética , Migração Humana , Camundongos/genética , Linhagem , Filogeografia , Animais , DNA Mitocondrial/genética , Genética Populacional , Geografia , Humanos , Filogenia
12.
PLoS One ; 6(12): e28622, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174847

RESUMO

The house mouse, Mus musculus, is one of the most ubiquitous invasive species worldwide and in Australia is particularly common and widespread, but where it originally came from is still unknown. Here we investigated this origin through a phylogeographic analysis of mitochondrial DNA sequences (D-loop) comparing mouse populations from Australia with those from the likely regional source area in Western Europe. Our results agree with human historical associations, showing a strong link between Australia and the British Isles. This outcome is of intrinsic and applied interest and helps to validate the colonization history of mice as a proxy for human settlement history.


Assuntos
Camundongos/genética , Animais , Austrália , Variação Genética , Geografia , Humanos , Dados de Sequência Molecular , Filogenia , Tasmânia
13.
BMC Biol ; 8: 131, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977781

RESUMO

Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice.


Assuntos
Adaptação Biológica/fisiologia , Ecossistema , Camundongos/fisiologia , Adaptação Biológica/genética , Animais , Demografia , Emigração e Imigração , Europa (Continente) , Humanos , Ilhas do Oceano Índico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...