Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279572

RESUMO

Several vaccines have been found effective against COVID-19, usually administered in homologous regimens, with the same vaccine used for the prime and boost doses. However, recent studies have demonstrated improved protection via heterologous mix-and-match COVID-19 vaccine combinations, and a direct comparison among these regimens is needed to identify the best employment strategies. Here, we show a single-cohort comparison of changes to the humoral and cellular immune compartments following five different COVID-19 vaccines spanning three technologies (adenoviral, mRNA and inactivated vaccines). These vaccines were administered in a combinatorial fashion, resulting in sixteen different homologous and heterologous regimens. SARS-CoV-2-targeting antibody titres were highest when the boost dose consisted of mRNA-1273, independent of the vaccine used for priming. Priming with BBIBP-CorV induced less class-switching among spike-binding memory B cells and the highest antigen-specific T cell responses in heterologous combinations. These were generally more immunogenic in terms of specific antibodies and cellular responses compared to homologous regimens. Finally, single-cell analysis of 754 samples revealed specific B and T cell signatures of the vaccination regimens, indicating distinctive differences in the immune responses. These data provide new insights on the immunological effects of COVID-19 vaccine combinations and a framework for the design of improved vaccination strategies for other pathogens and cancer.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270920

RESUMO

Molecular surveillance of SARS-CoV-2 is crucial to early detect new variants and lineages. In addition, detection of coinfections with more than one SARS-CoV-2 lineage have been sporadically reported. In this work, surveillance of SARS-CoV-2 variants was performed on 2067 RNA samples (Ct>30) obtained during December 2021 and January 2022 from Cordoba province, Argentina, by real time RT-PCR specific for VOC/VOI relevant mutations (TaqMan SARS-CoV-2 Mutation Panel, Applied Biosystems). The following distribution of variants was obtained: Omicron (54.9%), Delta (44.2%) and Lambda (0.8%). Three samples (0.1%), obtained the last week of December, presented a profile compatible with a Delta/Omicron co-infection. One of them was sequenced by NGS-Illumina, obtaining reads for both VOCs. One of the studied patients presented severe symptoms, although he was not vaccinated and presented risk factors (older than 60 years, arterial hypertension). We describe for the first time in Argentina, the identification of cases of co-infection with two SARS-CoV-2 lineages, VOCs Delta and Omicron, during the third COVID-19 wave in the country (a high viral circulation period), when Delta and Omicron co-circulated. Our findings highlight the importance of continuing with molecular surveillance and co-detection studies of VOC/VOIs, in order to elucidate possible recombination events and the emergence of new variants.

3.
Vaccine ; 40(5): 811-818, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-34953609

RESUMO

We evaluated humoral immune-response elicited by Sputnik-V by measuring anti-Spike (S) IgG antibodies (Abs) and neutralizing antibodies (NAb) prior to, 14 and 42 days after-vaccination. The safety and disease rates among vaccinated individuals were also evaluated. Since SARS-CoV-2 lineage P.1 is rapidly spreading in Argentina, virus-neutralizing activity of Sputnik-V-elicited and infection-elicited NAb faced to P.1 were also assessed. A total of 285 participants were recruited; all reported good tolerance, without any severe adverse event. Nine COVID-19 cases were confirmed in fully vaccinated individuals and viable P.1 variant was successfully isolated from one of them. At day 42, 99.65% of the individuals had anti-S IgG; however, 23.15% had not detectable NAbs. Significantly higher neutralization potency against WT compared to P.1 (p < 0·001) was observed. Some samples failed to neutralize P.1, mainly among vaccinated-naїve subjects; however, no significant differences were observed among previously infected-vaccinated individuals. Our results corroborated that Sputnik-V is safe and induces an efficient humoral immune response, although not all immunized subjects develop Nabs. Herein, we show for the first time, evidence of infectious SARS-CoV-2 shedding from Sputnik-V fully vaccinated individuals, by the isolation of viable virus from the nasopharyngeal swab of one participant of our study, 139 days after receiving the second dose. Thereby, we provide evidence indicating that the vaccine might avoid severe forms of COVID-19 but does not prevent infection nor prevents transmission from a fully vaccinated individual.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos
4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266126

RESUMO

BackgroundThe current COVID-19 pandemic has overloaded the diagnostic capacity of laboratories by the gold standard method rRT-PCR. This disease has a high spread rate and almost a quarter of infected individuals never develop symptoms. In this scenario, active surveillance is crucial to stop the virus propagation. MethodsBetween July 2020 and April 2021, 11580 oropharyngeal swab samples collected in closed and semi-closed institutions were processed for SARS-CoV-2 detection in pools, implementing this strategy for the first time in Cordoba, Argentina. Five-sample pools were constituted before nucleic acid extraction and amplification by rRT-PCR. Comparative analysis of cycle threshold (Ct) values from positive pools and individual samples along with a cost-benefit report of the whole performance of the results was performed. ResultsFrom 2314 5-sample pools tested, 158 were classified as positive (6.8%), 2024 as negative (87.5%), and 132 were categorized as indeterminate (5.7%). The Ct value shift due to sample dilution showed an increase in Ct of 2.6{+/-}1.53 cycles for N gene and 2.6{+/-}1.78 for ORF1ab gene. Overall, 290 pools were disassembled and 1450 swabs were analyzed individually. This strategy allowed correctly identifying 99.8% of the samples as positive (7.6%) or negative (92.2%), avoiding the execution of 7,806 rRT-PCR reactions which represents a cost saving of 67.5%. ConclusionThis study demonstrates the feasibility of pooling samples to increase the number of tests performed, helping to maximize molecular diagnostic resources and reducing the work overload of specialized personnel during active surveillance of the COVID-19 pandemic.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266265

RESUMO

BackgroundSARS-CoV-2 variants of concern (VOC) and interest (VOI) present mutations in reference to the original virus, being more transmissible. We implemented a rapid strategy for the screening of SARS-CoV-2 VOC/VOIs using real time RT-PCR and performed monitoring and surveillance of the variants in our region. Methodsconsecutive real-time RT-PCRs for detection of the relevant mutations/deletions present in the Spike protein in VOC/VOIs (TaqMan SARS-CoV-2 Mutation Panel, Applied Biosystems) were implemented. An algorithm was established and 3941 SARS-CoV-2 RNA samples (Cts<30) obtained from oropharyngeal swabs from infected individuals in Cordoba, Argentina, between January and October 2021, were analyzed. Resultsthe strategy of choice included a first screening of 3 mutations (N501Y, E484K, L452R) followed by the detection of other mutations/deletions based on the results. The analyses of the samples showed introductions of VOCs Alpha and Gamma in February and March 2021, respectively. Since then, Alpha presented a low to moderate circulation (1.7% of the SARS-CoV-2 currently detected). Gamma showed an exponential increase, with a peak of detection in July (72%), until reaching a current frequency of 41.1%. VOC Delta was first detected in July in travellers and currently represents 35% of detections in the community. VOI Lambda presented a gradual increase, showing a current frequency of 29%. Conclusionswe report a useful tool for VOC/VOI detection, innovative for Argentina, capable to quickly and cost-effectively monitor currently recognized variants. It was key in the early detection of Delta, being able to implement measures to delay its dissemination.

6.
Carolina Torres; Laura Mojsiejczuk; Dolores Acuna; Sofia Alexay; Ariel Amadio; Paula Aulicino; Humberto Debat; Franco Fernandez; Stephanie Goya; Guido Konig; Mercedes Nabaes Jodar; Luis Pianciola; Sofia Bengoa; Marco Cacciahue; Cecilia Camussone; Maria Jose Dus Santos; Maria Florencia Eberhardt; Ailen Fernandez; Maria Ines Gismondi; Matias Irazoqui; Silvina Lusso; Nathalie Marquez; Marianne Munoz; Monica Natale; Belen Pisano; Andrea Puebla; Viviana Re; Ezequiel Sosa; Jonathan Zaiat; Sebastian Zunino; Dario Do porto; Maria Elina Acevedo; Cristina Alvarez Lopez; Maria Laura Alvarez; Patricia Angeleri; Andres Angelletti; Manuel Arca; Gabriela Barbas; Ana Bertone; Agustina Bonnet; Ignacio Bourlot; Alejandro Castello; Gonzalo Castro; Carolina Ceriani; Carlos Cimino; Julian Cipelli; Maria Colmeiro; Andres Cordero; Carolina Cristina; Sofia Di Bella; Regina Ercole; Yesica Espasandin; Carlos Espul; Andrea Falaschi; Facundo Fernandez Moll; Andrea Gatelli; Sandra Goni; Maria E Jofre; Jose Jaramillo; Natalia Labarta; Maria A Lacaze; Rocio Larreche; Viviana Leiva; Gustavo Levin; Erica Luczak; Marcelo Mandile; Carla Massone; Melina Mazzeo; Carla Medina; Belen Monaco; Luciana Montoto; Viviana Mugna; Alejandra Musto; Guillermo Ojeda; Carolina Pintos; Marcia Pozzati; Marilina Rahhal; Claudia Rechimont; Federico Remes Lenicov; Gabriela Rompato; Vanesa Seery; Leticia Siri; Julieta Spina; Cintia Streitenberger; Ariel Suarez; Jorgelina Suarez; Paula Sujanski; Juan M Talia; Clara Theaux; Guillermo Thomas; Marina Ticeira; Estefania Tittarelli; Rosana Toro; Osvaldo Uez; Maria B Zaffanella; Cecilia Ziehm; Martin Zubieta; - PAIS Consortium; Alicia Mistchenko; Laura Valinotto; Mariana Viegas.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260779

RESUMO

Molecular surveillance of SARS-CoV-2 variants was performed on a total of 2,406 samples from the capital city and nine provinces of Argentina, during 30 epidemiological weeks (EW) that covered the end of the first wave and the beginning of the ongoing second wave of the COVID-19 pandemic in the country (EW 44/2020 to EW 20/2021). The surveillance strategy was mainly based on Sanger sequencing of a Spike coding region that allows the simultaneous identification of signature mutations associated with worldwide circulating variants. In addition, whole SARS-CoV-2 genome sequences were obtained from 456 samples. The main variants found were Gamma, Lambda and Alpha, and to a lesser extent, Zeta and Epsilon. Whereas Gamma dominated in different regions of the country, both Gamma and Lambda prevailed in the most populated area, the metropolitan region of Buenos Aires (MABA), although showing a heterogeneous distribution along this region. This cost-effective surveillance protocol allowed for a rapid response in a limited access to resources scenario, added information on the expansion of the Lambda variant in South America and contributed to the implementation of public health measures to control the disease spread in Argentina.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...