Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 69(8): 1502-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20511611

RESUMO

BACKGROUND: Oxidative stress is proposed as an important factor in osteoarthritis (OA). OBJECTIVE: To investigate the expression of the three superoxide dismutase (SOD) antioxidant enzymes in OA. METHODS: SOD expression was determined by real-time PCR and immunohistochemistry using human femoral head cartilage. SOD2 expression in Dunkin-Hartley guinea pig knee articular cartilage was determined by immunohistochemistry. The DNA methylation status of the SOD2 promoter was determined using bisulphite sequencing. RNA interference was used to determine the consequence of SOD2 depletion on the levels of reactive oxygen species (ROS) using MitoSOX and collagenases, matrix metalloproteinase 1 (MMP-1) and MMP-13, gene expression. RESULTS: All three SOD were abundantly expressed in human cartilage but were markedly downregulated in end-stage OA cartilage, especially SOD2. In the Dunkin-Hartley guinea pig spontaneous OA model, SOD2 expression was decreased in the medial tibial condyle cartilage before, and after, the development of OA-like lesions. The SOD2 promoter had significant DNA methylation alterations in OA cartilage. Depletion of SOD2 in chondrocytes increased ROS but decreased collagenase expression. CONCLUSION: This is the first comprehensive expression profile of all SOD genes in cartilage and, importantly, using an animal model, it has been shown that a reduction in SOD2 is associated with the earliest stages of OA. A decrease in SOD2 was found to be associated with an increase in ROS but a reduction of collagenase gene expression, demonstrating the complexities of ROS function.


Assuntos
Artrite Experimental/enzimologia , Regulação para Baixo , Osteoartrite do Quadril/enzimologia , Superóxido Dismutase/biossíntese , Animais , Sequência de Bases , Cartilagem Articular/enzimologia , Células Cultivadas , Condrócitos/enzimologia , Metilação de DNA , Progressão da Doença , Colo do Fêmur/enzimologia , Regulação Enzimológica da Expressão Gênica , Cobaias , Humanos , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 13 da Matriz/biossíntese , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética
2.
Kidney Int ; 74(9): 1139-49, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18633336

RESUMO

Joubert syndrome and related disorders are autosomal recessive multisystem diseases characterized by cerebellar vermis aplasia/hypoplasia, retinal degeneration and cystic kidney disease. There are five known genes; mutations of which give rise to a spectrum of renal cystic diseases the most common of which is nephronophthisis, a disorder characterized by early loss of urinary concentrating ability, renal fibrosis, corticomedullary cyst formation and renal failure. Many of the proteins encoded by these genes interact with one another and are located at adherens junctions or the primary cilia and or basal bodies. Here we characterize Jouberin, a multi-domain protein encoded by the AHI1 gene. Immunohistochemistry with a novel antibody showed that endogenous Jouberin is expressed in brain, kidney and HEK293 cells. In the kidney, Jouberin co-localized with aquaporin-2 in the collecting ducts. We show that Jouberin interacts with nephrocystin-1 as determined by yeast-2-hybrid system and this was confirmed by exogenous and endogenous co-immunoprecipitation in HEK293 cells. Jouberin is expressed at cell-cell junctions, primary cilia and basal body of mIMCD3 cells while a Jouberin-GFP construct localized to centrosomes in subconfluent and dividing MDCK cells. Our results suggest that Jouberin is a protein whose expression pattern supports both the adherens junction and the ciliary hypotheses for abnormalities leading to nephronophthisis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Túbulos Renais Coletores/química , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Aquaporina 2/metabolismo , Linhagem Celular , Centrossomo/química , Cílios/química , Proteínas do Citoesqueleto , Cães , Humanos , Imuno-Histoquímica , Junções Intercelulares/química , Túbulos Renais Coletores/metabolismo , Camundongos , Ligação Proteica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA