Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Phys Rev E ; 109(4): L042402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755841

RESUMO

Tropical rainforests exhibit a rich repertoire of spatial patterns emerging from the intricate relationship between the microscopic interaction between species. In particular, the distribution of vegetation clusters can shed much light on the underlying process that regulates the ecosystem. Analyzing the distribution of vegetation clusters at different resolution scales, we show the first robust evidence of scale-invariant clusters of vegetation, suggesting the coexistence of multiple intertwined scales in the collective dynamics of tropical rainforests. We use field data and computational simulations to confirm our hypothesis, proposing a predictor that could be particularly interesting to monitor the ecological resilience of the world's "green lungs."


Assuntos
Floresta Úmida , Clima Tropical , Modelos Biológicos , Plantas , Simulação por Computador
2.
Phys Rev E ; 108(2-1): 024313, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723818

RESUMO

We present a comparison between various algorithms of inference of covariance and precision matrices in small data sets of real vectors of the typical length and dimension of human brain activity time series retrieved by functional magnetic resonance imaging (fMRI). Assuming a Gaussian model underlying the neural activity, the problem consists of denoising the empirically observed matrices to obtain a better estimator of the (unknown) true precision and covariance matrices. We consider several standard noise-cleaning algorithms and compare them on two types of data sets. The first type consists of synthetic time series sampled from a generative Gaussian model of which we can vary the fraction of dimensions per sample q and the strength of off-diagonal correlations. The second type consists of time series of fMRI brain activity of human subjects at rest. The reliability of each algorithm is assessed in terms of test-set likelihood and, in the case of synthetic data, of the distance from the true precision matrix. We observe that the so-called optimal rotationally invariant estimator, based on random matrix theory, leads to a significantly lower distance from the true precision matrix in synthetic data and higher test likelihood in natural fMRI data. We propose a variant of the optimal rotationally invariant estimator in which one of its parameters is optimzed by cross-validation. In the severe undersampling regime (large q) typical of fMRI series, it outperforms all the other estimators. We furthermore propose a simple algorithm based on an iterative likelihood gradient ascent, leading to very accurate estimations in weakly correlated synthetic data sets.

3.
Sci Rep ; 13(1): 12988, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563177

RESUMO

The evolution of economic and innovation systems at the national scale is shaped by a complex dynamics related to the multi-layer network connecting countries to the activities in which they are proficient. Each layer represents a different domain, related to the production of knowledge and goods: scientific research, technology innovation, industrial production and trade. Nestedness, a footprint of a complex dynamics, emerges as a persistent feature across these multiple kinds of activities (i.e. network layers). We observe that, in the layers of innovation and trade, the competitiveness of countries correlates unambiguously with their diversification, while the science layer shows some peculiar features. The evolution of the scientific domain leads to an increasingly modular structure, in which the most developed countries become relatively less active in the less advanced scientific fields, where emerging countries acquire prominence. This observation is in line with a capability-based view of the evolution of economic systems, but with a slight twist. Indeed, while the accumulation of specific know-how and skills is a fundamental step towards development, resource constraints force countries to acquire competitiveness in the more complex research fields at the expense of more basic, albeit less visible (or more crowded) ones. This tendency towards a relatively specialized basket of capabilities leads to a trade-off between the need to diversify in order to evolve and the need to allocate resources efficiently. Collaborative patterns among developed countries reduce the necessity to be competitive in the less sophisticated research fields, freeing resources for the more complex ones.

4.
Med Devices (Auckl) ; 15: 263-275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958116

RESUMO

Background: Mechanical ventilation (MV) is used to support patients with respiratory impairment. Evidence supports the use of lung-protective ventilation (LPV) during MV to improve outcomes. However, studies have demonstrated poor adherence to LPV guidelines. We hypothesized that an electronic platform adapted to a hand-held tablet receiving real-time ventilatory parameters could increase clinician awareness of key LPV parameters. Furthermore, we speculated that an electronic shift-change tool could improve the quality of clinician handoffs. Methods: Using a specially designed Wi-Fi dongle to transmit data from three ventilators and a respiratory monitor, we implemented a system that displays data from all ventilators under the care of a Respiratory Care Practitioner (RCP) on an electronic tablet. In addition, the tablet created a handoff checklist to improve shift-change communication. In a simulated ICU environment, we monitored the performance of eight RCPs at baseline and while using the system. Results: Using the system, the time above guideline Pplat decreased by 74% from control, and the time outside the VT range decreased by 60% from control, p = 0.007 and 0.015, respectively. The handoff scores improved quality significantly from 2.8 to 1.6 on a scale of 1 to 5 (1 being best), p = 0.03. Conclusion: In a simulated environment, an electronic RT tool can significantly improve shift-change communication and increase the RCP's level of LPV adherence.

5.
Neurocrit Care ; 37(1): 172-183, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35229233

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI) is a major contributor to disability and mortality in the industrialized world. Outcomes of severe TBI are profoundly heterogeneous, complicating outcome prognostication. Several prognostic models have been validated for acute prediction of 6-month global outcomes following TBI (e.g., morbidity/mortality). In this preliminary observational prognostic study, we assess the utility of the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) Lab model in predicting longer term global and cognitive outcomes (7-10 years post injury) and the extent to which cerebrospinal fluid (CSF) biomarkers enhance outcome prediction. METHODS: Very long-term global outcome was assessed in a total of 59 participants (41 of whom did not survive their injuries) using the Glasgow Outcome Scale-Extended and Disability Rating Scale. More detailed outcome information regarding cognitive functioning in daily life was collected from 18 participants surviving to 7-10 years post injury using the Cognitive Subscale of the Functional Independence Measure. A subset (n = 10) of these participants also completed performance-based cognitive testing (Digit Span Test) by telephone. The IMPACT lab model was applied to determine its prognostic value in relation to very long-term outcomes as well as the additive effects of acute CSF ubiquitin C-terminal hydrolase-L1 (UCH-L1) and microtubule associated protein 2 (MAP-2) concentrations. RESULTS: The IMPACT lab model discriminated favorable versus unfavorable 7- to 10-year outcome with an area under the receiver operating characteristic curve of 0.80. Higher IMPACT lab model risk scores predicted greater extent of very long-term morbidity (ß = 0.488 p = 0.000) as well as reduced cognitive independence (ß = - 0.515, p = 0.034). Acute elevations in UCH-L1 levels were also predictive of lesser independence in cognitive activities in daily life at very long-term follow-up (ß = 0.286, p = 0.048). Addition of two CSF biomarkers significantly improved prediction of very long-term neuropsychological performance among survivors, with the overall model (including IMPACT lab score, UCH-L1, and MAP-2) explaining 89.6% of variance in cognitive performance 7-10 years post injury (p = 0.008). Higher acute UCH-L1 concentrations were predictive of poorer cognitive performance (ß = - 0.496, p = 0.029), whereas higher acute MAP-2 concentrations demonstrated a strong cognitive protective effect (ß = 0.679, p = 0.010). CONCLUSIONS: Although preliminary, results suggest that existing prognostic models, including models with incorporation of CSF markers, may be applied to predict outcome of severe TBI years after injury. Continued research is needed examining early predictors of longer-term outcomes following TBI to identify potential targets for clinical trials that could impact long-ranging functional and cognitive outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/fisiopatologia , Escala de Coma de Glasgow , Humanos , Proteínas Associadas aos Microtúbulos/líquido cefalorraquidiano , Prognóstico , Ubiquitina Tiolesterase/líquido cefalorraquidiano
6.
Front Public Health ; 9: 684760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336771

RESUMO

SARS-CoV-2 is currently causing hundreds of deaths every day in European countries, mostly in not yet vaccinated elderly. Vaccine shortage poses relevant challenges to health authorities, called to act promptly with a scarcity of data. We modeled the mortality reduction of the elderly according to a schedule of mRNA SARS-CoV-2 vaccine that prioritized first dose administration. For the case study of Italy, we show an increase in protected individuals up to 53.4% and a decrease in deaths up to 19.8% in the cohort of over 80's compared with the standard vaccine recalls after 3 or 4 weeks. This model supports the adoption of vaccination campaigns that prioritize the administration of the first doses in the elderly.


Assuntos
COVID-19 , Vacinas , Idoso , Vacinas contra COVID-19 , Europa (Continente) , Humanos , Itália , SARS-CoV-2
7.
Sci Rep ; 11(1): 15400, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321538

RESUMO

Network neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization's basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Rede Nervosa/ultraestrutura , Esquizofrenia/diagnóstico , Adolescente , Adulto , Idoso , Encéfalo/fisiopatologia , Encéfalo/ultraestrutura , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Adulto Jovem
8.
Nonlinear Dyn ; 101(3): 1635-1642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32839639

RESUMO

Motivated by the many diverse responses of different countries to the COVID-19 emergency, here we develop a toy model of the dependence of the epidemics spreading on the availability of tests for disease. Our model, that we call SUDR+K, grounds on the usual SIR model, with the difference of splitting the total fraction of infected individuals in two components: patients that are still undetected and patients that have been already detected through tests. Moreover, we assume that available tests increase at a constant rate from the beginning of epidemics but are consumed to detect infected individuals. Strikingly, we find a bi-stable behavior between a phase with a giant fraction of infected and a phase with a very small fraction. We show that the separation between these two regimes is governed by a match between the rate of testing and a rate of infection spread at given time. We also show that the existence of two phases does not depend on the mathematical choice of the form of the term describing the rate at which undetected individuals are tested and detected. Presented research implies that a vigorous early testing activity, before the epidemics enters its giant phase, can potentially keep epidemics under control, and that even a very small change of the testing rate around the bi-stable point can determine a fluctuation of the size of the whole epidemics of various orders of magnitude. For the real application of realistic model to ongoing epidemics, we would gladly collaborate with field epidemiologists in order to develop quantitative models of testing process.

9.
Phys Rev E ; 101(5-1): 052301, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575290

RESUMO

We address the problem of community detection in networks by introducing a general definition of Markov stability, based on the difference between the probability fluxes of a Markov chain on the network at different timescales. The specific implementation of the quality function and the resulting optimal community structure thus become dependent both on the type of Markov process and on the specific Markov times considered. For instance, if we use a natural Markov chain dynamics and discount its stationary distribution (that is, we take as reference process the dynamics at infinite time) we obtain the standard formulation of the Markov stability. Notably, the possibility to use finite-time transition probabilities to define the reference process naturally allows detecting communities at different resolutions, without the need to consider a continuous-time Markov chain in the small time limit. The main advantage of our general formulation of Markov stability based on dynamical flows is that we work with lumped Markov chains on network partitions, having the same stationary distribution of the original process. In this way the form of the quality function becomes invariant under partitioning, leading to a self-consistent definition of community structures at different aggregation scales.

10.
J Crit Care ; 57: 208-213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213447

RESUMO

INTRODUCTION: The patient-ventilator relationship is dynamic as the patient's health fluctuates and the ventilator settings are modified. Spontaneously breathing patients respond to mechanical ventilation by changing their patterns of breathing. This study measured the physiologic response when pressure support (PS) settings were modified during mechanical ventilation. METHODS: Subjects were instrumented with a non-invasive pressure, flow, and carbon dioxide airway sensor to estimate tidal volume, respiratory rate, minute ventilation, and end-tidal CO2. Additionally, a catheter was used to measure esophageal pressure and estimate effort exerted during breathing. Respiratory function measurements were obtained while PS settings were adjusted 569 times between 5 and 25 cmH2O. RESULTS: Data was collected on 248 patients. The primary patient response to changes in PS was to adjusting effort (power of breathing) followed by adjusting tidal volume. Changes in respiratory rate were less definite while changes in minute ventilation and end-tidal CO2 appeared unrelated to the change in PS. CONCLUSION: The data indicates that patients maintain a set minute ventilation by adjusting their breathing rate, volume, and power. The data indicates that the subjects regulate their Ve and PetCO2 by adjusting power of breathing and breathing pattern.


Assuntos
Respiração Artificial/métodos , Respiração , Taxa Respiratória , Volume de Ventilação Pulmonar , Adulto , Idoso , Dióxido de Carbono , Cateterismo , Esôfago/fisiologia , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Ventiladores Mecânicos , Trabalho Respiratório
11.
J Clin Monit Comput ; 34(5): 1035-1042, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31664660

RESUMO

Patient-ventilator asynchrony is associated with intolerance to noninvasive ventilation (NIV) and worsened outcomes. Our goal was to develop a tool to determine a patient needs for  intervention by a practitioner due to the presence of patient-ventilator asynchrony. We postulated that a clinician can determine when a patient needs corrective intervention due to the perceived severity of patient-ventilator asynchrony. We hypothesized a new measure, patient breathing variability, would indicate when corrective intervention is suggested by a bedside practitioner due to the perceived severity of patient-ventilator asynchrony. With IRB approval data was collected on 78 NIV patients. A panel of experts reviewed retrospective data from a development set of 10 NIV patients to categorize them into one of the three categories. The three categories were; "No to mild asynchrony-no intervention needed", "moderate asynchrony-non-emergent corrective intervention required", and "severe asynchrony-immediate intervention required". A stepwise regression with a F-test forward selection criterion was used to develop a positive linear logic model predicting the expert panel's categorizations of the need for corrective intervention. The model was incorporated into a software tool for clinical implementation. The tool was implemented prospectively on 68 NIV patients simultaneous to a bedside practitioner scoring the need for corrective intervention due to the perceived severity of patient-ventilator asynchrony. The categories from the tool and the practitioner were compared with the rate of agreement, sensitivity, specificity, and receiver operator characteristic analyses. The rate of agreement in categorizing the suggested need for clinical intervention due to the perceived presence of patient-ventilator asynchrony between the tool and experienced bedside practitioners was 95% with a Kappa score of 0.85 (p < 0.001). Further analysis found a specificity of 84% and sensitivity of 99%. The tool appears to accurately match the suggested need for corrective intervention by a bedside practitioner. Application of the tool allows for continuous, real time, and non-invasive monitoring of patients receiving NIV, and may enable early corrective interventions to ameliorate potential patient-ventilator asynchrony.


Assuntos
Ventilação não Invasiva , Humanos , Respiração , Respiração Artificial , Estudos Retrospectivos , Ventiladores Mecânicos
12.
J Clin Monit Comput ; 34(5): 1043-1049, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31673945

RESUMO

NIV therapy is used to provide positive pressure ventilation for patients. There are protocols describing what ventilator settings to use to initialize NIV; however, the guidelines for titrating ventilator settings are less specific. We developed an advisory system to recommend NIV ventilator setting titration and recorded respiratory therapist agreement rates at the bedside. We developed an algorithm (NIV advisor) to recommend when to change the non-invasive ventilator settings of IPAP, EPAP, and FiO2 based on patient respiratory parameters. The algorithm utilized a multi-target approach; oxygenation, ventilation, and patient effort. The NIV advisor recommended ventilator settings to move the patient's respiratory parameters in a preferred target range. We implemented a pilot study evaluating the usability of the NIV advisor on 10 patients receiving critical care with non-invasive ventilation (NIV). Respiratory therapists were asked their agreement on recommendations from the NIV advisor at the patient's bedside. Bedside respiratory therapists agreed with 91% of the ventilator setting recommendations from the NIV advisor. The POB and VT values were the respiratory parameters that were most often out of the preferred target range. The IPAP ventilator setting was the setting most often considered in need of changing by the NIV advisor. The respiratory therapists agreed with the majority of the recommendations from the NIV advisor. We consider the IPAP recommendations informative in providing the respiratory therapist assistance in targeting preferred POB and Vt values, as these values were frequently out of the target ranges. This pilot implementation was unable to produce the results required to determine the value of the EPAP recommendations. The FiO2 recommendations from the NIV advisor were treated as ancillary information behind the IPAP recommendations.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Ventilação não Invasiva , Insuficiência Respiratória , Humanos , Projetos Piloto , Ventiladores Mecânicos
13.
Sci Rep ; 9(1): 16440, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712700

RESUMO

We show that the space in which scientific, technological and economic activities interplay with each other can be mathematically shaped using techniques from statistical physics of networks. We build a holistic view of the innovation system as the tri-layered network of interactions among these many activities (scientific publication, patenting, and industrial production in different sectors), also taking into account the possible time delays. Within this construction we can identify which capabilities and prerequisites are needed to be competitive in a given activity, and even measure how much time is needed to transform, for instance, the technological know-how into economic wealth and scientific innovation, being able to make predictions with a very long time horizon. We find empirical evidence that, at the aggregate scale, technology is the best predictor for industrial and scientific production over the upcoming decades.

14.
PLoS One ; 14(5): e0217034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091296

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0197616.].

15.
Phys Rev E ; 99(3-1): 030301, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999479

RESUMO

The cornerstone of statistical mechanics of complex networks is the idea that the links, and not the nodes, are the effective particles of the system. Here, we formulate a mapping between weighted networks and lattice gases, making the conceptual step forward of interpreting weighted links as particles with a generalized coordinate. This leads to the definition of the grand canonical ensemble of weighted complex networks. We derive exact expressions for the partition function and thermodynamic quantities, both in the cases of global and local (i.e., node-specific) constraints on the density and mean energy of particles. We further show that, when modeling real cases of networks, the binary and weighted statistics of the ensemble can be disentangled, leading to a simplified framework for a range of practical applications.

16.
Crit Care Explor ; 1(10): e0057, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32166237

RESUMO

Sedation minimization and ventilator liberation protocols improve outcomes but are challenging to implement. We sought to demonstrate proof-of-concept and impact of an electronic application promoting sedation minimization and ventilator liberation. DESIGN: Multi-ICU proof-of-concept study and a single ICU before-after study. SETTING: University hospital ICUs. PATIENTS: Adult patients receiving mechanical ventilation. INTERVENTIONS: An automated application consisting of 1) a web-based dashboard with real-time data on spontaneous breathing trial readiness, sedation depth, sedative infusions, and nudges to wean sedation and ventilatory support and 2) text-message alerts once patients met criteria for a spontaneous breathing trial and spontaneous awakening trial. Pre-intervention, sedation minimization, and ventilator liberation were reviewed daily during a multidisciplinary huddle. Post-intervention, the dashboard was used during the multidisciplinary huddle, throughout the day by respiratory therapists, and text alerts were sent to bedside providers. MEASUREMENTS AND MAIN RESULTS: We enrolled 115 subjects in the proof-of-concept study. Spontaneous breathing trial alerts were accurate (98.3%), usually sent while patients were receiving mandatory ventilation (88.5%), and 61.9% of patients received concurrent spontaneous awakening trial alerts. We enrolled 457 subjects in the before-after study, 221 pre-intervention and 236 post-intervention. After implementation, patients were 28% more likely to be extubated (hazard ratio, 1.28; 95% CI, 1.01-1.63; p = 0.042) and 31% more likely to be discharged from the ICU (hazard ratio, 1.31; 95% CI, 1.03-1.67; p = 0.027) at any time point. After implementation, the median duration of mechanical ventilation was 2.20 days (95% CI, 0.09-4.31 d; p = 0.042) shorter and the median ICU length of stay was 2.65 days (95% CI, 0.13-5.16 d; p = 0.040) shorter, compared with the expected durations without the application. CONCLUSIONS: Implementation of an electronic dashboard and alert system promoting sedation minimization and ventilator liberation was associated with reductions in the duration of mechanical ventilation and ICU length of stay.

17.
Entropy (Basel) ; 21(2)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266842

RESUMO

In this work we aim at identifying combinations of technological advancements that reveal the presence of local capabilities for a given industrial production. To this end, we generated a multilayer network using country-level patent and trade data, and performed motif-based analysis on this network using a statistical-validation approach derived from maximum-entropy arguments. We show that in many cases the signal far exceeds the noise, providing robust evidence of synergies between different technologies that can lead to a competitive advantage in specific markets. Our results can be highly useful for policymakers to inform industrial and innovation policies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...