Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Br J Radiol ; 94(1120): 20200947, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544646

RESUMO

OBJECTIVES: In this study, we aimed to assess the impact of different CT reconstruction kernels on the stability of radiomic features and the transferability between different diseases and tissue types. Three lung diseases were evaluated, i.e. non-small cell lung cancer (NSCLC), malignant pleural mesothelioma (MPM) and interstitial lung disease related to systemic sclerosis (SSc-ILD) as well as four different tissue types, i.e. primary tumor, largest involved lymph node ipsilateral and contralateral lung. METHODS: Pre-treatment non-contrast enhanced CT scans from 23 NSCLC, 10 MPM and 12 SSc-ILD patients were collected retrospectively. For each patient, CT scans were reconstructed using smooth and sharp kernel in filtered back projection. The regions of interest (ROIs) were contoured on the smooth kernel-based CT and transferred to the sharp kernel-based CT. The voxels were resized to the largest voxel dimension of each cohort. In total, 1386 features were analyzed. Feature stability was assessed using the intraclass correlation coefficient. Features above the stability threshold >0.9 were considered stable. RESULTS: We observed a strong impact of the reconstruction method on stability of the features (at maximum 26% of the 1386 features were stable). Intensity features were the most stable followed by texture and wavelet features. The wavelet features showed a positive correlation between percentage of stable features and size of the ROI (R2 = 0.79, p = 0.005). Lymph node radiomics showed poorest stability (<10%) and lung radiomics the largest stability (26%). Robustness analysis done on the contralateral lung could to a large extent be transferred to the ipsilateral lung, and the overlap of stable lung features between different lung diseases was more than 50%. However, results of robustness studies cannot be transferred between tissue types, which was investigated in NSCLC and MPM patients; the overlap of stable features for lymph node and lung, as well as for primary tumor and lymph node was very small in both disease types. CONCLUSION: The robustness of radiomic features is strongly affected by different reconstruction kernels. The effect is largely influenced by the tissue type and less by the disease type. ADVANCES IN KNOWLEDGE: The study presents to our knowledge the most complete analysis on the impact of convolution kernel on the robustness of CT-based radiomics for four relevant tissue types in three different lung diseases. .


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Mesotelioma Maligno/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Estudos de Coortes , Humanos , Pulmão/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos
2.
Acta Oncol ; 56(9): 1197-1203, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502238

RESUMO

PURPOSE: Xerostomia is a common side effect of radiotherapy resulting from excessive irradiation of salivary glands. Typically, xerostomia is modeled by the mean dose-response characteristic of parotid glands and prevented by mean dose constraints to either contralateral or both parotid glands. The aim of this study was to investigate whether normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands are suitable for the prediction of xerostomia in a highly conformal low-dose regime of modern intensity-modulated radiotherapy (IMRT) techniques. MATERIAL AND METHODS: We present a retrospective analysis of 153 head and neck cancer patients treated with radiotherapy. The Lyman Kutcher Burman (LKB) model was used to evaluate predictive power of the parotid gland mean dose with respect to xerostomia at 6 and 12 months after the treatment. The predictive performance of the model was evaluated by receiver operating characteristic (ROC) curves and precision-recall (PR) curves. RESULTS: Average mean doses to ipsilateral and contralateral parotid glands were 25.4 Gy and 18.7 Gy, respectively. QUANTEC constraints were met in 74% of patients. Mild to severe (G1+) xerostomia prevalence at both 6 and 12 months was 67%. Moderate to severe (G2+) xerostomia prevalence at 6 and 12 months was 20% and 15%, respectively. G1 + xerostomia was predicted reasonably well with area under the ROC curve ranging from 0.69 to 0.76. The LKB model failed to provide reliable G2 + xerostomia predictions at both time points. CONCLUSIONS: Reduction of the mean dose to parotid glands below QUANTEC guidelines resulted in low G2 + xerostomia rates. In this dose domain, the mean dose models predicted G1 + xerostomia fairly well, however, failed to recognize patients at risk of G2 + xerostomia. There is a need for the development of more flexible models able to capture complexity of dose response in this dose regime.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Glândula Parótida/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Xerostomia/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândula Parótida/efeitos da radiação , Curva ROC , Dosagem Radioterapêutica , Estudos Retrospectivos , Xerostomia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...