Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Phys Med Biol ; 69(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38663411

RESUMO

Objective. Deep-learning networks for super-resolution (SR) reconstruction enhance the spatial-resolution of 3D magnetic resonance imaging (MRI) for MR-guided radiotherapy (MRgRT). However, variations between MRI scanners and patients impact the quality of SR for real-time 3D low-resolution (LR) cine MRI. In this study, we present a personalized super-resolution (psSR) network that incorporates transfer-learning to overcome the challenges in inter-scanner SR of 3D cine MRI.Approach: Development of the proposed psSR network comprises two-stages: (1) a cohort-specific SR (csSR) network using clinical patient datasets, and (2) a psSR network using transfer-learning to target datasets. The csSR network was developed by training on breath-hold and respiratory-gated high-resolution (HR) 3D MRIs and their k-space down-sampled LR MRIs from 53 thoracoabdominal patients scanned at 1.5 T. The psSR network was developed through transfer-learning to retrain the csSR network using a single breath-hold HR MRI and a corresponding 3D cine MRI from 5 healthy volunteers scanned at 0.55 T. Image quality was evaluated using the peak-signal-noise-ratio (PSNR) and the structure-similarity-index-measure (SSIM). The clinical feasibility was assessed by liver contouring on the psSR MRI using an auto-segmentation network and quantified using the dice-similarity-coefficient (DSC).Results. Mean PSNR and SSIM values of psSR MRIs were increased by 57.2% (13.8-21.7) and 94.7% (0.38-0.74) compared to cine MRIs, with the reference 0.55 T breath-hold HR MRI. In the contour evaluation, DSC was increased by 15% (0.79-0.91). Average time consumed for transfer-learning was 90 s, psSR was 4.51 ms per volume, and auto-segmentation was 210 ms, respectively.Significance. The proposed psSR reconstruction substantially increased image and segmentation quality of cine MRI in an average of 215 ms across the scanners and patients with less than 2 min of prerequisite transfer-learning. This approach would be effective in overcoming cohort- and scanner-dependency of deep-learning for MRgRT.


Assuntos
Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Radioterapia Guiada por Imagem/métodos , Aprendizado Profundo
3.
Phys Med Biol ; 69(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408387

RESUMO

Objective. Real-time MRgRT uses 2D-cine imaging for target tracking and motion evaluation. Rotation of gantry inducedB0off-resonance, resulting in image artifacts and imaging isocenter-shift precluding MR-guided arc therapy. Standard MRI phantoms designed for higher resolution images face challenges when low-resolution cine imaging is needed to achieve high frame rates. This work aimed to examine the spatial accuracy including geometric distortion and isocenter shift in real-time during gantry rotation on a 0.35 T MR-Linac using the concentric Cine imaging quality assurance (QA) phantom and its associated image analysis software.Approach. The Cine imaging QA phantom consists of two concentric shells of low-T1mineral oil and a central alignment structure. The phantom was scanned on three different MRI systems; 0.55 T Siemens Free.Max, 1.5 T Philips Ingenia, and 0.35 T ViewRay MRIdian MR-Linac using 2D balanced steady-state free precession (bSSFP) imaging sequence. In addition, bSSFP cine MRI with the banding artifact correction was tested on 0.35 T ViewRay MR-Linac. Images from the MR-Linac were acquired with the Linac gantry stationary and rotating from gantry 300°â†’ 0° and vice versa. Three orthogonal image planes were scanned excluding the 1.5 T Philips Ingenia, where only the axial plane was scanned. The image analysis software calculated the distortion values as well as the isocenter position for each cine frame.Main results. The geometric distortion of cine imaging on MRIs and MR-Linac at gantry stationary are within 1 mm while the substantial geometric distortion of 2 and 2.2 mm were observed on 0.35 T MR-Linac while rotating the gantry clockwise (300°â†’ 0°) and counterclockwise 0°â†’ 300° respectively. The average imaging isocenter shift was 0.1 mm for both MRIs and the static gantry and imaging isocenter shift of ≤1.5 mm was observed during the gantry rotation. The imaging isocenter shift decreased by 1 ± 0.2 mm clockwise and counterclockwise withB0compensation.Significance. The concentric Cine imaging QA phantom and its associated software effectively demonstrate the image distortion on real-time cine imaging on regular MRIs and 0.35 T MR-Linac. The results of significant geometric distortion with a rotating gantry in the MR-Linac system require further investigation to alleviate the extent of the image distortion.


Assuntos
Processamento de Imagem Assistida por Computador , Aceleradores de Partículas , Processamento de Imagem Assistida por Computador/métodos , Software , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
4.
J Appl Clin Med Phys ; 25(3): e14304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368615

RESUMO

BACKGROUND: Artifacts from implantable cardioverter defibrillators (ICDs) are a challenge to magnetic resonance imaging (MRI)-guided radiotherapy (MRgRT). PURPOSE: This study tested an unsupervised generative adversarial network to mitigate ICD artifacts in balanced steady-state free precession (bSSFP) cine MRIs and improve image quality and tracking performance for MRgRT. METHODS: Fourteen healthy volunteers (Group A) were scanned on a 0.35 T MRI-Linac with and without an MR conditional ICD taped to their left pectoral to simulate an implanted ICD. bSSFP MRI data from 12 of the volunteers were used to train a CycleGAN model to reduce ICD artifacts. The data from the remaining two volunteers were used for testing. In addition, the dataset was reorganized three times using a Leave-One-Out scheme. Tracking metrics [Dice similarity coefficient (DSC), target registration error (TRE), and 95 percentile Hausdorff distance (95% HD)] were evaluated for whole-heart contours. Image quality metrics [normalized root mean square error (nRMSE), peak signal-to-noise ratio (PSNR), and multiscale structural similarity (MS-SSIM) scores] were evaluated. The technique was also tested qualitatively on three additional ICD datasets (Group B) including a patient with an implanted ICD. RESULTS: For the whole-heart contour with CycleGAN reconstruction: 1) Mean DSC rose from 0.910 to 0.935; 2) Mean TRE dropped from 4.488 to 2.877 mm; and 3) Mean 95% HD dropped from 10.236 to 7.700 mm. For the whole-body slice with CycleGAN reconstruction: 1) Mean nRMSE dropped from 0.644 to 0.420; 2) Mean MS-SSIM rose from 0.779 to 0.819; and 3) Mean PSNR rose from 18.744 to 22.368. The three Group B datasets evaluated qualitatively displayed a reduction in ICD artifacts in the heart. CONCLUSION: CycleGAN-generated reconstructions significantly improved both tracking and image quality metrics when used to mitigate artifacts from ICDs.


Assuntos
Aprendizado Profundo , Desfibriladores Implantáveis , Radioterapia Guiada por Imagem , Humanos , Artefatos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
5.
J Appl Clin Med Phys ; 25(4): e14242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178622

RESUMO

PURPOSE: High-quality CBCT and AI-enhanced adaptive planning techniques allow CBCT-guided stereotactic adaptive radiotherapy (CT-STAR) to account for inter-fractional anatomic changes. Studies of intra-fractional respiratory motion management with a surface imaging solution for CT-STAR have not been fully conducted. We investigated intra-fractional motion management in breath-hold Ethos-based CT-STAR and CT-SBRT (stereotactic body non-adaptive radiotherapy) using optical surface imaging combined with onboard CBCTs. METHODS: Ten cancer patients with mobile lower lung or upper abdominal malignancies participated in an IRB-approved clinical trial (Phase I) of optical surface image-guided Ethos CT-STAR/SBRT. In the clinical trial, a pre-configured gating window (± 2 mm in AP direction) on optical surface imaging was used for manually triggering intra-fractional CBCT acquisition and treatment beam irradiation during breath-hold (seven patients for the end of exhalation and three patients for the end of inhalation). Two inter-fractional CBCTs at the ends of exhalation and inhalation in each fraction were acquired to verify the primary direction and range of the tumor/imaging-surrogate (donut-shaped fiducial) motion. Intra-fractional CBCTs were used to quantify the residual motion of the tumor/imaging-surrogate within the pre-configured breath-hold window in the AP direction. Fifty fractions of Ethos RT were delivered under surface image-guidance: Thirty-two fractions with CT-STAR (adaptive RT) and 18 fractions with CT-SBRT (non-adaptive RT). The residual motion of the tumor was quantified by determining variations in the tumor centroid position. The dosimetric impact on target coverage was calculated based on the residual motion. RESULTS: We used 46 fractions for the analysis of intra-fractional residual motion and 43 fractions for the inter-fractional motion analysis due to study constraints. Using the image registration method, 43 pairs of inter-fractional CBCTs and 100 intra-fractional CBCTs attached to dose maps were analyzed. In the motion range study (image registration) from the inter-fractional CBCTs, the primary motion (mean ± std) was 16.6 ± 9.2 mm in the SI direction (magnitude: 26.4 ± 11.3 mm) for the tumors and 15.5 ± 7.3 mm in the AP direction (magnitude: 20.4 ± 7.0 mm) for the imaging-surrogate, respectively. The residual motion of the tumor (image registration) from intra-fractional breath-hold CBCTs was 2.2 ± 2.0 mm for SI, 1.4 ± 1.4 mm for RL, and 1.3 ± 1.3 mm for AP directions (magnitude: 3.5 ± 2.1 mm). The ratio of the actual dose coverage to 99%, 90%, and 50% of the target volume decreased by 0.95 ± 0.11, 0.96 ± 0.10, 0.99 ± 0.05, respectively. The mean percentage of the target volume covered by the prescribed dose decreased by 2.8 ± 4.4%. CONCLUSION: We demonstrated the intra-fractional motion-managed treatment strategy in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT. While the controlled residual tumor motion measured at 3.5 mm exceeded the predetermined setup value of 2 mm, it is important to note that this motion still fell within the clinically acceptable range defined by the PTV margin of 5 mm. Nonetheless, additional caution is needed with intra-fractional motion management in breath-hold Ethos CT-STAR/SBRT using optical surface imaging and CBCT.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Suspensão da Respiração , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos de Viabilidade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
6.
Aging Dis ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37196135

RESUMO

Reduced cerebral blood flow (CBF) in the temporoparietal region and gray matter volumes (GMVs) in the temporal lobe were previously reported in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the temporal relationship between reductions in CBF and GMVs requires further investigation. This study sought to determine if reduced CBF is associated with reduced GMVs, or vice versa. Data came from 148 volunteers of the Cardiovascular Health Study Cognition Study (CHS-CS), including 58 normal controls (NC), 50 MCI, and 40 AD who had perfusion and structural MRIs during 2002-2003 (Time 2). Sixty-three of the 148 volunteers had follow-up perfusion and structural MRIs (Time 3). Forty out of the 63 volunteers received prior structural MRIs during 1997-1999 (Time 1). The relationships between GMVs and subsequent CBF changes, and between CBF and subsequent GMV changes were investigated. At Time 2, we observed smaller GMVs (p<0.05) in the temporal pole region in AD compared to NC and MCI. We also found associations between: (1) temporal pole GMVs at Time 2 and subsequent declines in CBF in this region (p=0.0014) and in the temporoparietal region (p=0.0032); (2) hippocampal GMVs at Time 2 and subsequent declines in CBF in the temporoparietal region (p=0.012); and (3) temporal pole CBF at Time 2 and subsequent changes in GMV in this region (p = 0.011). Therefore, hypoperfusion in the temporal pole may be an early event driving its atrophy. Perfusion declines in the temporoparietal and temporal pole follow atrophy in this temporal pole region.

7.
Med Phys ; 50(10): 6163-6176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37184305

RESUMO

BACKGROUND: MRI has a rapidly growing role in radiation therapy (RT) for treatment planning, real-time image guidance, and beam gating (e.g., MRI-Linac). Free-breathing 4D-MRI is desirable in respiratory motion management for therapy. Moreover, high-quality 3D-MRIs without motion artifacts are needed to delineate lesions. Existing MRI methods require multiple scans with lengthy acquisition times or are limited by low spatial resolution, contrast, and signal-to-noise ratio. PURPOSE: We developed a novel method to obtain motion-resolved 4D-MRIs and motion-integrated 3D-MRI reconstruction using a single rapid (35-45 s scan on a 0.35 T MRI-Linac. METHODS: Golden-angle radial stack-of-stars MRI scans were acquired from a respiratory motion phantom and 12 healthy volunteers (n = 12) on a 0.35 T MRI-Linac. A self-navigated method was employed to detect respiratory motion using 2000 (acquisition time = 5-7 min) and the first 200 spokes (acquisition time = 35-45 s). Multi-coil non-uniform fast Fourier transform (MCNUFFT), compressed sensing (CS), and deep-learning Phase2Phase (P2P) methods were employed to reconstruct motion-resolved 4D-MRI using 2000 spokes (MCNUFFT2000) and 200 spokes (CS200 and P2P200). Deformable motion vector fields (MVFs) were computed from the 4D-MRIs and used to reconstruct motion-corrected 3D-MRIs with the MOtion Transformation Integrated forward-Fourier (MOTIF) method. Image quality was evaluated quantitatively using the structural similarity index measure (SSIM) and the root mean square error (RMSE), and qualitatively in a blinded radiological review. RESULTS: Evaluation using the respiratory motion phantom experiment showed that the proposed method reversed the effects of motion blurring and restored edge sharpness. In the human study, P2P200 had smaller inaccuracy in MVFs estimation than CS200. P2P200 had significantly greater SSIMs (p < 0.0001) and smaller RMSEs (p < 0.001) than CS200 in motion-resolved 4D-MRI and motion-corrected 3D-MRI. The radiological review found that MOTIF 3D-MRIs using MCNUFFT2000 exhibited the highest image quality (scoring > 8 out of 10), followed by P2P200 (scoring > 5 out of 10), and then motion-uncorrected (scoring < 3 out of 10) in sharpness, contrast, and artifact-freeness. CONCLUSIONS: We have successfully demonstrated a method for respiratory motion management for MRI-guided RT. The method integrated self-navigated respiratory motion detection, deep-learning P2P 4D-MRI reconstruction, and a motion integrated reconstruction (MOTIF) for 3D-MRI using a single rapid MRI scan (35-45 s) on a 0.35 T MRI-Linac system.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento Tridimensional/métodos , Movimento (Física) , Imageamento por Ressonância Magnética/métodos , Respiração , Imagens de Fantasmas
8.
IEEE Trans Biomed Eng ; 70(5): 1528-1538, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36374883

RESUMO

Focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) is an emerging technique for the noninvasive and spatiotemporally controlled diagnosis of brain cancer by inducing blood-brain barrier (BBB) disruption to release brain tumor-specific biomarkers into the blood circulation. The feasibility, safety, and efficacy of sonobiopsy were demonstrated in both small and large animal models using magnetic resonance-guided FUS devices. However, the high cost and complex operation of magnetic resonance-guided FUS devices limit the future broad application of sonobiopsy in the clinic. In this study, a neuronavigation-guided sonobiopsy device is developed and its targeting accuracy is characterized in vitro, in vivo, and in silico. The sonobiopsy device integrated a commercially available neuronavigation system (BrainSight) with a nimble, lightweight FUS transducer. Its targeting accuracy was characterized in vitro in a water tank using a hydrophone. The performance of the device in BBB disruption was verified in vivo using a pig model, and the targeting accuracy was quantified by measuring the offset between the target and the actual locations of BBB opening. The feasibility of the FUS device in targeting glioblastoma (GBM) tumors was evaluated in silico using numerical simulation by the k-Wave toolbox in glioblastoma patients. It was found that the targeting accuracy of the neuronavigation-guided sonobiopsy device was 1.7 ± 0.8 mm as measured in the water tank. The neuronavigation-guided FUS device successfully induced BBB disruption in pigs with a targeting accuracy of 3.3 ± 1.4 mm. The targeting accuracy of the FUS transducer at the GBM tumor was 5.5 ± 4.9 mm. Age, sex, and incident locations were found to be not correlated with the targeting accuracy in GBM patients. This study demonstrated that the developed neuronavigation-guided FUS device could target the brain with a high spatial targeting accuracy, paving the foundation for its application in the clinic.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Suínos , Neuronavegação/métodos , Encéfalo , Barreira Hematoencefálica/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética/métodos , Microbolhas
9.
Med Phys ; 49(10): 6451-6460, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35906957

RESUMO

BACKGROUND: Rotation of the ferromagnetic gantry of a low magnetic field MRI-Linac was previously demonstrated to cause large center frequency offsets of ±400 Hz. The B0 off-resonances cause image artifacts and imaging isocenter shifts that would preclude MRI-guided arc therapy. PURPOSE: The purpose of this study was to measure and compensate for center frequency offsets in real time during gantry rotation on a 0.35-T MRI-Linac using a free induction decay (FID) navigator. METHODS: A nonselective FID navigator was added before each 2D balanced steady-state free precession cine image acquisition on a 0.35-T MRI-Linac. Images were acquired at 7.3 frames per second. Phase data from the initial FID navigator (while the gantry was stationary) was used as a reference. The phase data from each subsequent FID navigator was used to calculate the real-time B0 off-resonance. The transmitter/receiver phase and the phase accrual over the adjacent image acquisition were adjusted to correct for the center frequency offset. Measurements were performed using an MRI-Linac dynamic phantom prior to and while the gantry rotated clockwise and counterclockwise. Image quality and signal-to-noise ratio (SNR) were compared between uncorrected and B0 -corrected MRIs using a reference image acquired while the gantry was stationary. Four targets in the phantom were manually contoured on the first image frame, and an active contouring algorithm was used retrospectively on each subsequent frame to assess image variations and calculate Dice coefficients. Additionally, three healthy volunteers were imaged using the same pulse sequences with and without real-time B0 compensation during gantry rotation. Normalized root mean square errors (nRMSEs) were calculated for the phantom and in vivo to assess the efficacy of the B0 compensation on image quality. The measured center frequency offsets from the volunteer and MRI dynamic phantom navigator data were also compared. The sinusoidal behavior of the center frequency offsets was modeled based on the gantry layout and long-time constant eddy currents resulting from gantry rotation. RESULTS: The duration of the FID navigator and processing was 4.5 ms. The FID navigator resulted in a ≤11% drop in SNR in the phantom and in vivo (liver). Dice coefficients from the MRI-guided radiation therapy (MR-IGRT) phantom contour measurements remained above 0.8 with B0 compensation. Without B0 compensation, the Dice coefficients dropped below 0.8 for up to 21% of the time depending on the contour. Real-time B0 compensation resulted in mean reductions in nRMSE of 51% and 16% for the MR-IGRT phantom and in vivo, respectively. Peak-to-peak center frequency offsets ranged from 757 to 773 Hz in the phantom and 760 to 871 Hz in vivo. CONCLUSION: Dynamic real-time B0 compensation significantly improved image quality and reduced artifacts during gantry rotation in the phantom and in vivo. However, the FID navigator resulted in a small drop in the imaging duty cycle and SNR.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Retrospectivos , Rotação
10.
J Alzheimers Dis ; 88(2): 693-705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694929

RESUMO

BACKGROUND: Biomarkers for Alzheimer's disease (AD) are crucial for early diagnosis and treatment monitoring once disease modifying therapies become available. OBJECTIVE: This study aims to quantify the forward magnetization transfer rate (kfor) map from brain tissue water to macromolecular protons and use it to identify the brain regions with abnormal kfor in AD and AD progression. METHODS: From the Cardiovascular Health Study (CHS) cognition study, magnetization transfer imaging (MTI) was acquired at baseline from 63 participants, including 20 normal controls (NC), 18 with mild cognitive impairment (MCI), and 25 AD subjects. Of those, 53 participants completed a follow-up MRI scan and were divided into four groups: 15 stable NC, 12 NC-to-MCI, 12 stable MCI, and 14 MCI/AD-to-AD subjects. kfor maps were compared across NC, MCI, and AD groups at baseline for the cross-sectional study and across four longitudinal groups for the longitudinal study. RESULTS: We found a lower kfor in the frontal gray matter (GM), parietal GM, frontal corona radiata (CR) white matter (WM) tracts, frontal and parietal superior longitudinal fasciculus (SLF) WM tracts in AD relative to both NC and MCI. Further, we observed progressive decreases of kfor in the frontal GM, parietal GM, frontal and parietal CR WM tracts, and parietal SLF WM tracts in stable MCI. In the parietal GM, parietal CR WM tracts, and parietal SLF WM tracts, we found trend differences between MCI/AD-to-AD and stable NC. CONCLUSION: Forward magnetization transfer rate is a promising biomarker for AD diagnosis and progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Doença de Alzheimer/psicologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem
11.
J Appl Clin Med Phys ; 23(7): e13650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35615991

RESUMO

PURPOSE: Since 4D-MRI is inadequate to capture dynamic respiratory variations, real-time cinematographic (cine) MRI is actively used in MR-guided radiotherapy (MRgRT) for tumor motion evaluation, delineation, and tracking. However, most radiotherapy imaging platforms do not support the format of cine MRI from clinical MRI systems. This study developed an institutional solution of clinical cine MRI for tumor motion evaluation in radiotherapy applications. METHODS: Cine MRI manipulation software (called Cine Viewer) was developed within a commercial Treatment Planning System (TPS). It consists of (1) single/orthogonal viewers, (2) display controllers, (3) measurement grids/markers, and (4) manual contouring tools. RESULTS: The institutional solution of clinical cine MRI incorporated with radiotherapy application was assessed through case presentations (liver cancer). Cine Viewer loaded cine MRIs from 1.5T Philips Ingenia MRI, handling MRI DICOM format. The measurement grids and markers were used to quantify the displacement of anatomical structures in addition to the tumor. The contouring tool was utilized to localize the tumor and surrogates on the designated frame. The stacks of the contours were exhibited to present the ranges of tumor and surrogate motions. For example, the stacks of the tumor contours from case-1 were used to determine the ranges of tumor motions (∼8.17 mm on the x-direction [AP-direction] and ∼14 mm on the y-direction [SI-direction]). In addition, the patterns of the displacement of the contours over frames were analyzed and reported using in-house software. In the case-1 review, the tumor was displaced from +146.0 mm on the x-direction and +125.0 mm on the y-direction from the ROI of the abdominal surface. CONCLUSION: We demonstrated the institutional solution of clinical cine MRI in radiotherapy. The proposed tools can streamline the utilization of cine MRI for tumor motion evaluation using Eclipse for treatment planning.


Assuntos
Neoplasias Hepáticas , Imagem Cinética por Ressonância Magnética , Humanos , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Movimento (Física) , Respiração
12.
Magn Reson Med ; 88(2): 676-690, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35344592

RESUMO

PURPOSE: We evaluated the impact of PET respiratory motion correction (MoCo) in a phantom and patients. Moreover, we proposed and examined a PET MoCo approach using motion vector fields (MVFs) from a deep-learning reconstructed short MRI scan. METHODS: The evaluation of PET MoCo was performed in a respiratory motion phantom study with varying lesion sizes and tumor to background ratios (TBRs) using a static scan as the ground truth. MRI-based MVFs were derived from either 2000 spokes (MoCo2000 , 5-6 min acquisition time) using a Fourier transform reconstruction or 200 spokes (MoCoP2P200 , 30-40 s acquisition time) using a deep-learning Phase2Phase (P2P) reconstruction and then incorporated into PET MoCo reconstruction. For six patients with hepatic lesions, the performance of PET MoCo was evaluated using quantitative metrics (SUVmax , SUVpeak , SUVmean , lesion volume) and a blinded radiological review on lesion conspicuity. RESULTS: MRI-assisted PET MoCo methods provided similar results to static scans across most lesions with varying TBRs in the phantom. Both MoCo2000 and MoCoP2P200 PET images had significantly higher SUVmax , SUVpeak , SUVmean and significantly lower lesion volume than non-motion-corrected (non-MoCo) PET images. There was no statistical difference between MoCo2000 and MoCoP2P200 PET images for SUVmax , SUVpeak , SUVmean or lesion volume. Both radiological reviewers found that MoCo2000 and MoCoP2P200 PET significantly improved lesion conspicuity. CONCLUSION: An MRI-assisted PET MoCo method was evaluated using the ground truth in a phantom study. In patients with hepatic lesions, PET MoCo images improved quantitative and qualitative metrics based on only 30-40 s of MRI motion modeling data.


Assuntos
Aprendizado Profundo , Tomografia por Emissão de Pósitrons , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Tomografia por Emissão de Pósitrons/métodos
13.
Theranostics ; 12(1): 362-378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987650

RESUMO

Though surgical biopsies provide direct access to tissue for genomic characterization of brain cancer, they are invasive and pose significant clinical risks. Brain cancer management via blood-based liquid biopsies is a minimally invasive alternative; however, the blood-brain barrier (BBB) restricts the release of brain tumor-derived molecular biomarkers necessary for sensitive diagnosis. Methods: A mouse glioblastoma multiforme (GBM) model was used to demonstrate the capability of focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) to improve the diagnostic sensitivity of brain tumor-specific genetic mutations compared with conventional blood-based liquid biopsy. Furthermore, a pig GBM model was developed to characterize the translational implications of sonobiopsy in humans. Magnetic resonance imaging (MRI)-guided FUS sonication was performed in mice and pigs to locally enhance the BBB permeability of the GBM tumor. Contrast-enhanced T1-weighted MR images were acquired to evaluate the BBB permeability change. Blood was collected immediately after FUS sonication. Droplet digital PCR was used to quantify the levels of brain tumor-specific genetic mutations in the circulating tumor DNA (ctDNA). Histological staining was performed to evaluate the potential for off-target tissue damage by sonobiopsy. Results: Sonobiopsy improved the detection sensitivity of EGFRvIII from 7.14% to 64.71% and TERT C228T from 14.29% to 45.83% in the mouse GBM model. It also improved the diagnostic sensitivity of EGFRvIII from 28.57% to 100% and TERT C228T from 42.86% to 71.43% in the porcine GBM model. Conclusion: Sonobiopsy disrupts the BBB at the spatially-targeted brain location, releases tumor-derived DNA into the blood circulation, and enables timely collection of ctDNA. Converging evidence from both mouse and pig GBM models strongly supports the clinical translation of sonobiopsy for the minimally invasive, spatiotemporally-controlled, and sensitive molecular characterization of brain cancer.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante/metabolismo , Glioblastoma , Biópsia Líquida/métodos , Sonicação/métodos , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Suínos
14.
Pract Radiat Oncol ; 12(1): e49-e55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34464743

RESUMO

During the last decade, radiation oncology departments have integrated magnetic resonance imaging (MRI) equipment, procedures, and expertise into their practices. MRI safety is an important consideration because a large percentage of patients receiving radiation therapy have histories of multiple surgeries and implanted devices. However, MRI safety guidelines and workflows were traditionally designed for radiology departments. This report presents an MR safety program designed for a radiation oncology department to address its specific needs.


Assuntos
Radioterapia (Especialidade) , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
15.
IEEE J Transl Eng Health Med ; 9: 1800113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168920

RESUMO

OBJECTIVE: To introduce an MRI in-plane resolution enhancement method that estimates High-Resolution (HR) MRIs from Low-Resolution (LR) MRIs. METHOD & MATERIALS: Previous CNN-based MRI super-resolution methods cause loss of input image information due to the pooling layer. An Autoencoder-inspired Convolutional Network-based Super-resolution (ACNS) method was developed with the deconvolution layer that extrapolates the missing spatial information by the convolutional neural network-based nonlinear mapping between LR and HR features of MRI. Simulation experiments were conducted with virtual phantom images and thoracic MRIs from four volunteers. The Peak Signal-to-Noise Ratio (PSNR), Structure SIMilarity index (SSIM), Information Fidelity Criterion (IFC), and computational time were compared among: ACNS; Super-Resolution Convolutional Neural Network (SRCNN); Fast Super-Resolution Convolutional Neural Network (FSRCNN); Deeply-Recursive Convolutional Network (DRCN). RESULTS: ACNS achieved comparable PSNR, SSIM, and IFC results to SRCNN, FSRCNN, and DRCN. However, the average computation speed of ACNS was 6, 4, and 35 times faster than SRCNN, FSRCNN, and DRCN, respectively under the computer setup used with the actual average computation time of 0.15 s per [Formula: see text].


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Redes Neurais de Computação , Imagens de Fantasmas , Razão Sinal-Ruído
16.
J Alzheimers Dis ; 82(1): 293-305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024834

RESUMO

BACKGROUND: This is the first longitudinal study to assess regional cerebral blood flow (rCBF) changes during the progression from normal control (NC) through mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE: We aim to determine if perfusion MRI biomarkers, derived from our prior cross-sectional study, can predict the onset and cognitive decline of AD. METHODS: Perfusion MRIs using arterial spin labeling (ASL) were acquired in 15 stable-NC, 14 NC-to-MCI, 16 stable-MCI, and 18 MCI/AD-to-AD participants from the Cardiovascular Health Study (CHS) cognition study. Group comparisons, predictions of AD conversion and time to conversion, and Modified Mini-Mental State Examination (3MSE) from rCBF were performed. RESULTS: Compared to the stable-NC group: 1) the stable-MCI group exhibited rCBF decreases in the right temporoparietal (p = 0.00010) and right inferior frontal and insula (p = 0.0094) regions; and 2) the MCI/AD-to-AD group exhibited rCBF decreases in the bilateral temporoparietal regions (p = 0.00062 and 0.0035). Compared to the NC-to-MCI group, the stable-MCI group exhibited a rCBF decrease in the right hippocampus region (p = 0.0053). The baseline rCBF values in the posterior cingulate cortex (PCC) (p = 0.0043), bilateral superior medial frontal regions (BSMF) (p = 0.012), and left inferior frontal (p = 0.010) regions predicted the 3MSE scores for all the participants at follow-up. The baseline rCBF in the PCC and BSMF regions predicted the conversion and time to conversion from MCI to AD (p < 0.05; not significant after multiple corrections). CONCLUSION: We demonstrated the feasibility of ASL in detecting rCBF changes in the typical AD-affected regions and the predictive value of baseline rCBF on AD conversion and cognitive decline.


Assuntos
Doença de Alzheimer/fisiopatologia , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/fisiopatologia , Valor Preditivo dos Testes , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Feminino , Giro do Cíngulo/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo
17.
Int J Hyperthermia ; 38(1): 498-510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757406

RESUMO

PURPOSE: To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT). METHODS: Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer. Thirty-four different angles of rotation along subjects' longitudinal axis were analyzed. Targetability was categorized as: (1) Targetable with/without minimal intervention; (2) Not targetable. To determine if any factors could be used for prospective screening of patients, potential associations between demographic/anatomical factors and targetability were analyzed. RESULTS: 72.15% primary tumors and 33.96% metastatic lymph nodes were targetable from at least one angle. 49.37% and 39.24% of primary tumors could be targeted with patient laying in supine and prone positions, respectively. 25°-30° rotation and 0° rotation had the highest rate of the posterior and anterior targetability, respectively. The ventral depth of the tumor and its distance to the coccyx were statistically correlated with the anterior and posterior targetability, respectively. CONCLUSION: Most late-stage cervical cancer primaries were targetable by MRgHIFU HT requiring either no/minimal intervention. A rotation of 0° or 25°-30° relative to the transducer might benefit anterior and posterior targetability, respectively. Certain demographic/anatomic parameters might be useful in screening patients for treatability.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias do Colo do Útero , Feminino , Humanos , Hipertermia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
18.
J Appl Clin Med Phys ; 22(2): 118-125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33450146

RESUMO

Diffusion-weighted imaging (DWI) provides a valuable diagnostic tool for tumor evaluation. Yet, it is difficult to acquire daily MRI data sets in the traditional radiotherapy clinical setting due to patient burden and limited resources. However, integrated MRI radiotherapy treatment systems facilitate daily functional MRI acquisitions like DWI during treatment exams. Before ADC values from MR-RT systems can be used clinically their reproducibility and accuracy must be quantified. This study used a NIST traceable DWI phantom to verify ADC values acquired on a 0.35 T MR-LINAC system at multiple gantry angles. A diffusion-weighted echo planar imaging sequence was used for all image acquisitions, with b-values of 0, 500, 900, 2000 s/mm2 for the 1.5 T and 3.0 T systems and 0, 200, 500, 800 s/mm2 for the 0.35 T system. Images were acquired at multiple gantry angles on the MR-LINAC system from 0° to 330° in 30° increments to assess the impact of gantry angle on geometric distortion and ADC values. CT images, and three fiducial markers were used as ground truth for geometric distortion measurements. The distance between fiducial markers increased by as much as 7.2 mm on the MR-LINAC at gantry angle 60°. ADC values of deionized water vials from the 1.5 T and 3.0 T systems were 8.30 × 10-6  mm2 /s and -0.85 × 10-6  mm2 /s off, respectively, from the expected value of 1127 × 10-6  mm2 /s. The MR-LINAC system provided an ADC value of the pure water vials that was -116.63 × 10-6  mm2 /s off from the expected value of 1127 × 10-6  mm2 /s. The MR-LINAC also showed a variation in ADC across all gantry angles of 33.72 × 10-6  mm2 /s and 20.41 × 10-6  mm2 /s for the vials with expected values of 1127 × 10-6  mm2 /s and 248 × 10-6  mm2 /s, respectively. This study showed that variation of the ADC values and geometric information on the 0.35 T MR-LINAC system was dependent on the gantry angle at acquisition.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagem de Difusão por Ressonância Magnética , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
19.
Phys Med Biol ; 66(4): 045030, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33412539

RESUMO

Accurate deformable four-dimensional (4D) (three-dimensional in space and time) medical images registration is essential in a variety of medical applications. Deep learning-based methods have recently gained popularity in this area for the significantly lower inference time. However, they suffer from drawbacks of non-optimal accuracy and the requirement of a large amount of training data. A new method named GroupRegNet is proposed to address both limitations. The deformation fields to warp all images in the group into a common template is obtained through one-shot learning. The use of the implicit template reduces bias and accumulated error associated with the specified reference image. The one-shot learning strategy is similar to the conventional iterative optimization method but the motion model and parameters are replaced with a convolutional neural network and the weights of the network. GroupRegNet also features a simpler network design and a more straightforward registration process, which eliminates the need to break up the input image into patches. The proposed method was quantitatively evaluated on two public respiratory-binned 4D-computed tomography datasets. The results suggest that GroupRegNet outperforms the latest published deep learning-based methods and is comparable to the top conventional method pTVreg. To facilitate future research, the source code is available at https://github.com/vincentme/GroupRegNet.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Movimento , Respiração
20.
Hum Brain Mapp ; 42(1): 24-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910516

RESUMO

Declining estrogen levels before, during, and after menopause can affect memory and risk for Alzheimer's disease. Undesirable side effects of hormone variations emphasize a role for hormone therapy (HT) where possible benefits include a delay in the onset of dementia-yet findings are inconsistent. Effects of HT may be mediated by estrogen receptors found throughout the brain. Effects may also depend on lifestyle factors, timing of use, and genetic risk. We studied the impact of self-reported HT use on brain volume in 562 elderly women (71-94 years) with mixed cognitive status while adjusting for aforementioned factors. Covariate-adjusted voxelwise linear regression analyses using a model with 16 predictors showed HT use as positively associated with regional brain volumes, regardless of cognitive status. Examinations of other factors related to menopause, oophorectomy and hysterectomy status independently yielded positive effects on brain volume when added to our model. One interaction term, HTxBMI, out of several examined, revealed significant negative association with overall brain volume, suggesting a greater reduction in brain volume than BMI alone. Our main findings relating HT to regional brain volume were as hypothesized, but some exploratory analyses were not in line with existing hypotheses. Studies suggest lower levels of estrogen resulting from oophorectomy and hysterectomy affect brain volume negatively, and the addition of HT modifies the relation between BMI and brain volume positively. Effects of HT may depend on the age range assessed, motivating studies with a wider age range as well as a randomized design.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Cognição/fisiologia , Terapia de Reposição de Estrogênios , Estrogênios/metabolismo , Estrogênios/farmacologia , Pós-Menopausa/fisiologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Histerectomia/efeitos adversos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Ovariectomia/efeitos adversos , Pós-Menopausa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...