Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 13(23): 3257-3262, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36403160

RESUMO

The presence of endogenous d-stereoisomers of amino acids in mammals dispels a long-standing dogma about their existence. d-Serine and d-aspartate function as novel neurotransmitters in mammals. However, the stereoisomer with the fastest, spontaneous in vitro racemization rate, d-cysteine, has not been reported. We utilized a novel, stereospecific, bioluminescent assay to identify endogenous d-cysteine in substantial amounts in the eye, brain, and pancreas of mice. d-Cysteine is enriched in mice embryonic brains at day E9.5 (4.5 mM) and decreases progressively with development (µM levels). d-Cysteine is also present in significantly higher amounts in the human brain white matter compared with gray matter. In the luciferase assay, d-cysteine conjugates with cyano hydroxy benzothiazole in the presence of a base and reducing agent to form d-luciferin. d-Luciferin, subsequently, in the presence of firefly luciferase and ATP, emits bioluminescence proportional to the concentration of d-cysteine. The assay is stereospecific and allows the quantitative estimation of endogenous d-cysteine in tissues in addition to its specificity for d-cysteine. Future efforts aimed at bioluminescent in vivo imaging of d-cysteine may allow a more noninvasive means of its detection, thereby elucidating its function.


Assuntos
Cisteína , Medições Luminescentes , Humanos , Animais , Camundongos , Mamíferos
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556581

RESUMO

d-amino acids are increasingly recognized as important signaling molecules in the mammalian central nervous system. However, the d-stereoisomer of the amino acid with the fastest spontaneous racemization ratein vitro in vitro, cysteine, has not been examined in mammals. Using chiral high-performance liquid chromatography and a stereospecific luciferase assay, we identify endogenous d-cysteine in the mammalian brain. We identify serine racemase (SR), which generates the N-methyl-d-aspartate (NMDA) glutamate receptor coagonist d-serine, as a candidate biosynthetic enzyme for d-cysteine. d-cysteine is enriched more than 20-fold in the embryonic mouse brain compared with the adult brain. d-cysteine reduces the proliferation of cultured mouse embryonic neural progenitor cells (NPCs) by ∼50%, effects not shared with d-serine or l-cysteine. The antiproliferative effect of d-cysteine is mediated by the transcription factors FoxO1 and FoxO3a. The selective influence of d-cysteine on NPC proliferation is reflected in overgrowth and aberrant lamination of the cerebral cortex in neonatal SR knockout mice. Finally, we perform an unbiased screen for d-cysteine-binding proteins in NPCs by immunoprecipitation with a d-cysteine-specific antibody followed by mass spectrometry. This approach identifies myristoylated alanine-rich C-kinase substrate (MARCKS) as a putative d-cysteine-binding protein. Together, these results establish endogenous mammalian d-cysteine and implicate it as a physiologic regulator of NPC homeostasis in the developing brain.


Assuntos
Encéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Racemases e Epimerases/fisiologia , Serina/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química
3.
Sci Signal ; 8(373): ra37, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900831

RESUMO

Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardiorespiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys(265) and Cys(282)) of HO-2. CO stimulated protein kinase G (PKG)-dependent phosphorylation of Ser(377) of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing.


Assuntos
Corpo Carotídeo/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Sulfeto de Hidrogênio/química , Oxigênio/química , Motivos de Aminoácidos , Animais , Cálcio/química , Cistationina gama-Liase/metabolismo , Cisteína/química , Feminino , Gases , Células HEK293 , Heme/química , Humanos , Hipóxia , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Isoformas de Proteínas/metabolismo , Respiração
4.
Proc Natl Acad Sci U S A ; 112(6): 1773-8, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25617365

RESUMO

The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell-cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fosfatos de Inositol/metabolismo , Metástase Neoplásica/fisiopatologia , Fosfotransferases (Aceptor do Grupo Fosfato)/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP , Animais , Western Blotting , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Imunoprecipitação , Fosfatos de Inositol/biossíntese , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(45): 16005-10, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349427

RESUMO

Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1-3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN-CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4-CSN complex, thereby regulating nucleotide excision repair and cell death.


Assuntos
Proteínas Culina/metabolismo , Reparo do DNA/efeitos da radiação , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Complexo do Signalossomo COP9 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos da radiação , Proteínas Culina/genética , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/genética , Peptídeo Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Transdução de Sinais/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(3): 1174-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395806

RESUMO

Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats.


Assuntos
Monóxido de Carbono/química , Corpo Carotídeo/fisiologia , Sulfeto de Hidrogênio/química , Hipertensão/metabolismo , Oxigênio/química , Edema Pulmonar/metabolismo , Animais , Peso Corporal , Catecolaminas/metabolismo , Cistationina gama-Liase/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Hipóxia , Imuno-Histoquímica , Masculino , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Respiração , Transdução de Sinais , Especificidade da Espécie , Nervos Esplâncnicos/patologia
7.
Am J Physiol Cell Physiol ; 303(9): C916-23, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22744006

RESUMO

H(2)S generated by the enzyme cystathionine-γ-lyase (CSE) has been implicated in O(2) sensing by the carotid body. The objectives of the present study were to determine whether glomus cells, the primary site of hypoxic sensing in the carotid body, generate H(2)S in an O(2)-sensitive manner and whether endogenous H(2)S is required for O(2) sensing by glomus cells. Experiments were performed on glomus cells harvested from anesthetized adult rats as well as age and sex-matched CSE(+/+) and CSE(-/-) mice. Physiological levels of hypoxia (Po(2) ∼30 mmHg) increased H(2)S levels in glomus cells, and dl-propargylglycine (PAG), a CSE inhibitor, prevented this response in a dose-dependent manner. Catecholamine (CA) secretion from glomus cells was monitored by carbon-fiber amperometry. Hypoxia increased CA secretion from rat and mouse glomus cells, and this response was markedly attenuated by PAG and in cells from CSE(-/-) mice. CA secretion evoked by 40 mM KCl, however, was unaffected by PAG or CSE deletion. Exogenous application of a H(2)S donor (50 µM NaHS) increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in glomus cells, with a time course and magnitude that are similar to that produced by hypoxia. [Ca(2+)](i) responses to NaHS and hypoxia were markedly attenuated in the presence of Ca(2+)-free medium or cadmium chloride, a pan voltage-gated Ca(2+) channel blocker, or nifedipine, an L-type Ca(2+) channel inhibitor, suggesting that both hypoxia and H(2)S share common Ca(2+)-activating mechanisms. These results demonstrate that H(2)S generated by CSE is a physiologic mediator of the glomus cell's response to hypoxia.


Assuntos
Corpo Carotídeo/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipóxia/metabolismo , Alcinos/farmacologia , Animais , Cloreto de Cádmio/farmacologia , Cálcio/análise , Bloqueadores dos Canais de Cálcio/farmacologia , Corpo Carotídeo/efeitos dos fármacos , Catecolaminas/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Masculino , Camundongos , Nifedipino/farmacologia , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfetos/farmacologia
8.
Mol Cell ; 45(1): 13-24, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22244329

RESUMO

Nuclear factor κB (NF-κB) is an antiapoptotic transcription factor. We show that the antiapoptotic actions of NF-κB are mediated by hydrogen sulfide (H(2)S) synthesized by cystathionine gamma-lyase (CSE). TNF-α treatment triples H(2)S generation by stimulating binding of SP1 to the CSE promoter. H(2)S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE-deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H(2)S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the coactivator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early after TNF-α treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. In CSE mutant mice, antiapoptotic influences of NF-κB are markedly diminished. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its antiapoptotic transcriptional activity.


Assuntos
Apoptose/fisiologia , Sulfeto de Hidrogênio/química , NF-kappa B/química , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/fisiologia , Regulação da Expressão Gênica , Camundongos , NF-kappa B/fisiologia , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
9.
Proc Natl Acad Sci U S A ; 109(4): 1293-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232681

RESUMO

Enhancement of cerebral blood flow by hypoxia is critical for brain function, but signaling systems underlying its regulation have been unclear. We report a pathway mediating hypoxia-induced cerebral vasodilation in studies monitoring vascular disposition in cerebellar slices and in intact mouse brains using two-photon intravital laser scanning microscopy. In this cascade, hypoxia elicits cerebral vasodilation via the coordinate actions of H(2)S formed by cystathionine ß-synthase (CBS) and CO generated by heme oxygenase (HO)-2. Hypoxia diminishes CO generation by HO-2, an oxygen sensor. The constitutive CO physiologically inhibits CBS, and hypoxia leads to increased levels of H(2)S that mediate the vasodilation of precapillary arterioles. Mice with targeted deletion of HO-2 or CBS display impaired vascular responses to hypoxia. Thus, in intact adult brain cerebral cortex of HO-2-null mice, imaging mass spectrometry reveals an impaired ability to maintain ATP levels on hypoxia.


Assuntos
Monóxido de Carbono/metabolismo , Cérebro/irrigação sanguínea , Sulfeto de Hidrogênio/metabolismo , Hipóxia/fisiopatologia , Microcirculação/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Vasodilatação/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Western Blotting , Cistationina beta-Sintase/metabolismo , Primers do DNA/genética , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Imuno-Histoquímica , Espectrometria de Massas , Camundongos , Microscopia Confocal
10.
Proc Natl Acad Sci U S A ; 107(23): 10719-24, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20556885

RESUMO

Gaseousmessengers, nitric oxide and carbon monoxide, have been implicated in O2 sensing by the carotid body, a sensory organ that monitors arterial blood O2 levels and stimulates breathing in response to hypoxia. We now show that hydrogen sulfide (H2S) is a physiologic gasotransmitter of the carotid body, enhancing its sensory response to hypoxia. Glomus cells, the site of O2 sensing in the carotid body, express cystathionine gamma-lyase (CSE), an H2S-generating enzyme, with hypoxia increasing H2S generation in a stimulus-dependent manner. Mice with genetic deletion of CSE display severely impaired carotid body response and ventilatory stimulation to hypoxia, as well as a loss of hypoxia-evoked H2S generation. Pharmacologic inhibition of CSE elicits a similar phenotype in mice and rats. Hypoxia-evoked H2S generation in the carotid body seems to require interaction of CSE with hemeoxygenase-2, which generates carbon monoxide. CSE is also expressed in neonatal adrenal medullary chromaffin cells of rats and mice whose hypoxia-evoked catecholamine secretion is greatly attenuated by CSE inhibitors and in CSE knockout mice.


Assuntos
Corpo Carotídeo/fisiologia , Sulfeto de Hidrogênio/metabolismo , Oxigênio/fisiologia , Animais , Cistationina gama-Liase/deficiência , Cistationina gama-Liase/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ratos
11.
J Neurochem ; 113(1): 14-26, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20067586

RESUMO

Nitric oxide (NO) and carbon monoxide (CO) are well established as messenger molecules throughout the body, gasotransmitters, based on striking alterations in mice lacking the appropriate biosynthetic enzymes. Hydrogen sulfide (H(2)S) is even more chemically reactive, but until recently there was little definitive evidence for its physiologic formation. Cystathionine beta-synthase (EC 4.2.1.22), and cystathionine gamma-lyase (CSE; EC 4.4.1.1), also known as cystathionine, can generate H(2)S from cyst(e)ine. Very recent studies with mice lacking these enzymes have established that CSE is responsible for H(2)S formation in the periphery, while in the brain cystathionine beta-synthase is the biosynthetic enzyme. Endothelial-derived relaxing factor activity is reduced 80% in the mesenteric artery of mice with deletion of CSE, establishing H(2)S as a major physiologic endothelial-derived relaxing factor. H(2)S appears to signal predominantly by S-sulfhydrating cysteines in its target proteins, analogous to S-nitrosylation by NO. Whereas S-nitrosylation typically inhibits enzymes, S-sulfhydration activates them. S-nitrosylation basally affects 1-2% of its target proteins, while 10-25% of H(2)S target proteins are S-sulfhydrated. In summary, H(2)S appears to be a physiologic gasotransmitter of comparable importance to NO and carbon monoxide.


Assuntos
Sulfeto de Hidrogênio , Transdução de Sinais/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/deficiência , Cistationina gama-Liase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fatores Relaxantes Dependentes do Endotélio/farmacologia , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Camundongos , Camundongos Knockout , Modelos Moleculares , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Sci Signal ; 2(96): ra72, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19903941

RESUMO

Hydrogen sulfide (H2S), a messenger molecule generated by cystathionine gamma-lyase, acts as a physiologic vasorelaxant. Mechanisms whereby H2S signals have been elusive. We now show that H2S physiologically modifies cysteines in a large number of proteins by S-sulfhydration. About 10 to 25% of many liver proteins, including actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are sulfhydrated under physiological conditions. Sulfhydration augments GAPDH activity and enhances actin polymerization. Sulfhydration thus appears to be a physiologic posttranslational modification for proteins.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Transdução de Sinais , Compostos de Sulfidrila/metabolismo , Actinas/metabolismo , Animais , Biopolímeros/metabolismo , Cromatografia Líquida de Alta Pressão , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Tubulina (Proteína)/metabolismo
13.
Sci Signal ; 2(68): re2, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19401594

RESUMO

Nitric oxide is well established as a major signaling molecule. Evidence is accumulating that carbon monoxide and hydrogen sulfide also are physiologic mediators in the cardiovascular, immune, and nervous systems. This Review focuses on mechanisms whereby they signal by binding to metal centers in metalloproteins, such as in guanylyl cyclase, or modifying sulfhydryl groups in protein targets.


Assuntos
Monóxido de Carbono/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...