Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(4): ar56, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381558

RESUMO

Tepsin is an established accessory protein found in Adaptor Protein 4 (AP-4) coated vesicles, but the biological role of tepsin remains unknown. AP-4 vesicles originate at the trans-Golgi network (TGN) and target the delivery of ATG9A, a scramblase required for autophagosome biogenesis, to the cell periphery. Using in silico methods, we identified a putative LC3-Interacting Region (LIR) motif in tepsin. Biochemical experiments using purified recombinant proteins indicate tepsin directly binds LC3B preferentially over other members of the mammalian ATG8 family. Calorimetry and structural modeling data indicate this interaction occurs with micromolar affinity using the established LC3B LIR docking site. Loss of tepsin in cultured cells dysregulates ATG9A export from the TGN as well as ATG9A distribution at the cell periphery. Tepsin depletion in a mRFP-GFP-LC3B HeLa reporter cell line using siRNA knockdown increases autophagosome volume and number, but does not appear to affect flux through the autophagic pathway. Reintroduction of wild-type tepsin partially rescues ATG9A cargo trafficking defects. In contrast, reintroducing tepsin with a mutated LIR motif or missing N-terminus drives diffuse ATG9A subcellular distribution. Together, these data suggest roles for tepsin in cargo export from the TGN; ensuring delivery of ATG9A-positive vesicles; and in overall maintenance of autophagosome structure.


Assuntos
Autofagossomos , Autofagia , Animais , Humanos , Autofagossomos/metabolismo , Autofagia/genética , Rede trans-Golgi/metabolismo , Células HeLa , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502979

RESUMO

Tepsin is an established accessory protein found in Adaptor Protein 4 (AP-4) coated vesicles, but the biological role of tepsin remains unknown. AP-4 vesicles originate at the trans -Golgi network (TGN) and target the delivery of ATG9A, a scramblase required for autophagosome biogenesis, to the cell periphery. Using in silico methods, we identified a putative L C3-Interacting R egion (LIR) motif in tepsin. Biochemical experiments using purified recombinant proteins indicate tepsin directly binds LC3B, but not other members, of the mammalian ATG8 family. Calorimetry and structural modeling data indicate this interaction occurs with micromolar affinity using the established LC3B LIR docking site. Loss of tepsin in cultured cells dysregulates ATG9A export from the TGN as well as ATG9A distribution at the cell periphery. Tepsin depletion in a mRFP-GFP-LC3B HeLa reporter cell line using siRNA knockdown increases autophagosome volume and number, but does not appear to affect flux through the autophagic pathway. Re-introduction of wild-type tepsin partially rescues ATG9A cargo trafficking defects. In contrast, re-introducing tepsin with a mutated LIR motif or missing N-terminus does not fully rescue altered ATG9A subcellular distribution. Together, these data suggest roles for tepsin in cargo export from the TGN; delivery of ATG9A-positive vesicles at the cell periphery; and in overall maintenance of autophagosome structure.

3.
Protein Sci ; 29(6): 1535-1549, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285480

RESUMO

Genetic variation in the membrane trafficking adapter protein complex 4 (AP-4) can result in pathogenic neurological phenotypes including microencephaly, spastic paraplegias, epilepsy, and other developmental defects. We lack molecular mechanisms responsible for impaired AP-4 function arising from genetic variation, because AP-4 remains poorly understood structurally. Here, we analyze patterns of AP-4 genetic evolution and conservation to identify regions that are likely important for function and thus more susceptible to pathogenic variation. We map known variants onto an AP-4 homology model and predict the likelihood of pathogenic variation at a given location on the structure of AP-4. We find significant clustering of likely pathogenic variants located at the interface between the ß4 and N-µ4 subunits, as well as throughout the C-µ4 subunit. Our work offers an integrated perspective on how genetic and evolutionary forces affect AP-4 structure and function. As more individuals with uncharacterized AP-4 variants are identified, our work provides a foundation upon which their functional effects and disease relevance can be interpreted.


Assuntos
Complexo 4 de Proteínas Adaptadoras/química , Complexo 4 de Proteínas Adaptadoras/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Evolução Molecular , Variação Genética/genética , Humanos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos
4.
Biochemistry ; 59(10): 1113-1123, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32101684

RESUMO

Steroid-degrading bacteria, including Mycobacterium tuberculosis (Mtb), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are α2ß2 heterotetramers that are usually encoded by adjacent fadE-like genes. In mycobacteria, ipdE1 and ipdE2 (formerly fadE30 and fadE33) occur in divergently transcribed operons associated with the catabolism of 3aα-H-4α(3'-propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP), a steroid metabolite. In Mycobacterium smegmatis, ΔipdE1 and ΔipdE2 mutants had similar phenotypes, showing impaired growth on cholesterol and accumulating 5-OH HIP in the culture supernatant. Bioinformatic analyses revealed that IpdE1 and IpdE2 share many of the features of the α- and ß-subunits, respectively, of heterotetrameric ACADs that are encoded by adjacent genes in many steroid-degrading proteobacteria. When coproduced in a rhodococcal strain, IpdE1 and IpdE2 of Mtb formed a complex that catalyzed the dehydrogenation of 5OH-HIP coenzyme A (5OH-HIP-CoA) to 5OH-3aα-H-4α(3'-prop-1-enoate)-7aß-methylhexa-hydro-1,5-indanedione coenzyme A ((E)-5OH-HIPE-CoA). This corresponds to the initial step in the pathway that leads to degradation of steroid C and D rings via ß-oxidation. Small-angle X-ray scattering revealed that the IpdE1-IpdE2 complex was an α2ß2 heterotetramer typical of other ACADs involved in steroid catabolism. These results provide insight into an important class of steroid catabolic enzymes and a potential virulence determinant in Mtb.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Acil-CoA Desidrogenase/fisiologia , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Esteroides/metabolismo
5.
Methods Enzymol ; 621: 245-260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31128782

RESUMO

Interactions at biological membranes are important for many cellular functions, but because of the dynamic nature of these interactions, traditional methods of structure investigation are limited. Here, we describe a method that utilizes thiol-maleimide chemistry to monitor the solvent-accessible surface of membrane-protein complexes and membrane dynamics in vitro in real time. This method, called the isotope-coded mass tag (ICMT) method, has been used previously to locate thiols in transmembrane peptides, to elucidate lipid flipping kinetics in bilayers, to determine the oxidation state of disulfide bonds, and to investigate the protein-lipid interface of the peripheral membrane protein cholesterol oxidase. The method requires only microgram quantities of protein or thiolated lipid, uses common laboratory equipment and routine instrumentation, and can be applied to many different systems to investigate macromolecular interactions in the presence or absence of biological membranes.


Assuntos
Membrana Celular/química , Proteínas de Membrana/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos de Sulfidrila/análise , Animais , Colesterol Oxidase/análise , Humanos , Marcação por Isótopo , Maleimidas/química , Modelos Moleculares , Oxirredução
6.
Biochemistry ; 57(36): 5370-5378, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125103

RESUMO

Although the interfacial membrane protein cholesterol oxidase is structurally and kinetically well-characterized, its orientation in and mode of interaction with cholesterol-containing membranes have not been established. Cholesterol oxidase can alter the structure of the cell membrane in pathogenic bacteria and is thus a potential antimicrobial drug target. We recently developed a mass spectrometry-based isotope-coded mass tag (ICMT) labeling method to monitor the real-time solvent-accessible surface of peripheral membrane proteins, such as cholesterol oxidase. The ICMT strategy utilizes maleimide-based isotope tags that covalently react with cysteine residues. In this study, by comparing the ICMT labeling rates of cysteine variants of cholesterol oxidase, we determined which residues of the protein were engaged with the protein-lipid interface. We found that upon addition of cholesterol-containing lipid vesicles, four cysteine residues in a cluster near the substrate entrance channel are labeled more slowly with ICMT probes than in the absence of vesicles, indicating that these four residues were in contact with the membrane surface. From these data, we generated a model of how cholesterol oxidase is oriented when bound to the membrane. In conclusion, this straightforward method, which requires only microgram quantities of protein, offers several advantages over existing methods for the investigation of interfacial membrane proteins and can be applied to a number of different systems.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Colesterol Oxidase/química , Colesterol/química , Cisteína/química , Marcação por Isótopo/métodos , Streptomyces/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Colesterol Oxidase/genética , Colesterol Oxidase/metabolismo , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Conformação Proteica
7.
Biochemistry ; 54(35): 5457-68, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26271001

RESUMO

Although they are classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl ß-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. Here, we show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl ß-diol substrate analogues. By applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and that a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in the regulation of DIM biosynthesis.


Assuntos
Aciltransferases/metabolismo , Lipídeos/biossíntese , Mycobacterium tuberculosis/enzimologia , Aciltransferases/química , Ativação Enzimática/fisiologia , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Lipídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...