Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 8(9): 2300-2312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721081

RESUMO

Deposition of liposomal drugs into solid tumors is a potentially rate-limiting step for drug delivery and has substantial variability that may influence probability of response. Tumor deposition is a shared mechanism for liposomal therapeutics such that a single companion diagnostic agent may have utility in predicting response to multiple nanomedicines. Methods: We describe the development, characterization and preclinical proof-of-concept of the positron emission tomography (PET) agent, MM-DX-929, a drug-free untargeted 100 nm PEGylated liposome stably entrapping a chelated complex of 4-DEAP-ATSC and 64Cu (copper-64). MM-DX-929 is designed to mimic the biodistribution of similarly sized therapeutic agents and enable quantification of deposition in solid tumors. Results: MM-DX-929 demonstrated sufficient in vitro and in vivo stability with PET images accurately reflecting the disposition of liposome nanoparticles over the time scale of imaging. MM-DX-929 is also representative of the tumor deposition and intratumoral distribution of three different liposomal drugs, including targeted liposomes and those with different degrees of PEGylation. Furthermore, stratification using a single pre-treatment MM-DX-929 PET assessment of tumor deposition demonstrated that tumors with high MM-DX-929 deposition predicted significantly greater anti-tumor activity after multi-cycle treatments with different liposomal drugs. In contrast, MM-DX-929 tumor deposition was not prognostic in untreated tumor-bearing xenografts, nor predictive in animals treated with small molecule chemotherapeutics. Conclusions: These data illustrate the potential of MM-DX-929 PET as a companion diagnostic strategy to prospectively select patients likely to respond to liposomal drugs or nanomedicines of similar molecular size.


Assuntos
Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Lipossomos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Células HT29 , Humanos , Camundongos , Nanomedicina/métodos , Neoplasias/metabolismo , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual/fisiologia
2.
Anticancer Drugs ; 28(10): 1086-1096, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28857767

RESUMO

Liposomal irinotecan (irinotecan liposome injection, nal-IRI), a liposomal formulation of irinotecan, is designed for extended circulation relative to irinotecan and for exploiting discontinuous tumor vasculature for enhanced drug delivery to tumors. Following tumor deposition, nal-IRI is taken up by phagocytic cells followed by irinotecan release and conversion to its active metabolite, SN-38. Sustained inhibition of topoisomerase 1 by extended SN-38 exposure as a result of delivery by nal-IRI is hypothesized to enable superior antitumor activity compared with traditional topoisomerase 1 inhibitors such as conventional irinotecan and topotecan. We evaluated the antitumor activity of nal-IRI compared with irinotecan and topotecan in preclinical models of small-cell lung cancer (SCLC) including in a model pretreated with carboplatin and etoposide, a first-line regimen used in SCLC. Nal-IRI demonstrated antitumor activity in xenograft models of SCLC at clinically relevant dose levels, and resulted in complete or partial responses in DMS-53, DMS-114, and NCI-H1048 cell line-derived models as well as in three patient-derived xenograft models. The antitumor activity of nal-IRI was superior to that of topotecan in all models tested, which generally exhibited limited control of tumor growth and was superior to irinotecan in four out of five models. Further, nal-IRI demonstrated antitumor activity in tumors that progressed following treatment with topotecan or irinotecan, and demonstrated significantly greater antitumor activity than both topotecan and irinotecan in NCI-H1048 tumors that had progressed on previous carboplatin plus etoposide treatment. These results support the clinical development of nal-IRI in patients with SCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Camptotecina/análogos & derivados , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Inibidores da Topoisomerase I/administração & dosagem , Animais , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , Feminino , Humanos , Irinotecano , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Distribuição Aleatória , Carcinoma de Pequenas Células do Pulmão/enzimologia , Topotecan/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 23(15): 4190-4202, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28298546

RESUMO

Purpose: Therapeutic nanoparticles are designed to deliver their drug payloads through enhanced permeability and retention (EPR) in solid tumors. The extent of EPR and its variability in human tumors is highly debated and has been proposed as an explanation for variable responses to therapeutic nanoparticles in clinical studies.Experimental Design: We assessed the EPR effect in patients using a 64Cu-labeled nanoparticle, 64Cu-MM-302 (64Cu-labeled HER2-targeted PEGylated liposomal doxorubicin), and imaging by PET/CT. Nineteen patients with HER2-positive metastatic breast cancer underwent 2 to 3 PET/CT scans postadministration of 64Cu-MM-302 as part of a clinical trial of MM-302 plus trastuzumab with and without cyclophosphamide (NCT01304797).Results: Significant background uptake of 64Cu-MM-302 was observed in liver and spleen. Tumor accumulation of 64Cu-MM-302 at 24 to 48 hours varied 35-fold (0.52-18.5 %ID/kg), including deposition in bone and brain lesions, and was independent of systemic plasma exposure. Computational analysis quantified rates of deposition and washout, indicating peak liposome deposition at 24 to 48 hours. Patients were classified on the basis of 64Cu-MM-302 lesion deposition using a cut-off point that is comparable with a response threshold in preclinical studies. In a retrospective exploratory analysis of patient outcomes relating to drug levels in tumor lesions, high 64Cu-MM-302 deposition was associated with more favorable treatment outcomes (HR = 0.42).Conclusions: These findings provide important evidence and quantification of the EPR effect in human metastatic tumors and support imaging nanoparticle deposition in tumors as a potential means to identify patients well suited for treatment with therapeutic nanoparticles. Clin Cancer Res; 23(15); 4190-202. ©2017 AACR.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Nanopartículas/administração & dosagem , Adolescente , Adulto , Idoso , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos da radiação , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Pessoa de Meia-Idade , Nanopartículas/química , Metástase Neoplásica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor ErbB-2/sangue , Baço/diagnóstico por imagem , Baço/patologia , Trastuzumab/administração & dosagem
4.
Mol Cancer Ther ; 14(9): 2060-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162690

RESUMO

Given the bulky nature of nanotherapeutics relative to small molecules, it is hypothesized that effective tumor delivery and penetration are critical barriers to their clinical activity. HER2-targeted PEGylated liposomal doxorubicin (MM-302, HER2-tPLD) is an antibody-liposomal drug conjugate designed to deliver doxorubicin to HER2-overexpressing cancer cells while limiting uptake into nontarget cells. In this work, we demonstrate that the administration and appropriate dose sequencing of cyclophosphamide can improve subsequent MM-302 delivery and enhance antitumor activity in preclinical models without negatively affecting nontarget tissues, such as the heart and skin. We demonstrate that this effect is critically dependent on the timing of cyclophosphamide administration. Furthermore, the effect was found to be unique to cyclophosphamide and related analogues, and not shared by other agents, such as taxanes or eribulin, under the conditions examined. Analysis of the cyclophosphamide-treated tumors suggests that the mechanism for improved MM-302 delivery involves the induction of tumor cell apoptosis, reduction of overall tumor cell density, substantial lowering of interstitial fluid pressure, and increasing vascular perfusion. The novel dosing strategy for cyclophosphamide described herein is readily translatable to standard clinical regimens, represents a potentially significant advance in addressing the drug delivery challenge, and may have broad applicability for nanomedicines. This work formed the basis for clinical evaluation of cyclophosphamide for improving liposome deposition as part of an ongoing phase I clinical trial of MM-302 in HER2-positive metastatic breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Ciclofosfamida/farmacologia , Doxorrubicina/análogos & derivados , Receptor ErbB-2/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Ifosfamida/administração & dosagem , Ifosfamida/farmacologia , Camundongos , Polietilenoglicóis/administração & dosagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
EJNMMI Res ; 5: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918676

RESUMO

BACKGROUND: Features of the tumor microenvironment influence the efficacy of cancer nanotherapeutics. The ability to directly radiolabel nanotherapeutics offers a valuable translational tool to obtain biodistribution and tumor deposition data, testing the hypothesis that the extent of delivery predicts therapeutic outcome. In support of a first in-human clinical trial with (64)Cu-labeled HER2-targeted liposomal doxorubicin ((64)Cu-MM-302), a preclinical dosimetric analysis was performed. METHODS: Whole-body biodistribution and pharmacokinetic data were obtained in mice that received (64)Cu-MM-302 and used to estimate absorbed radiation doses in normal human organs. PET/CT imaging revealed non-uniform distribution of (64)Cu signal in mouse kidneys. Kidney micro-dosimetry analysis was performed in mice and squirrel monkeys, using a physiologically based pharmacokinetic model to estimate the full dynamics of the (64)Cu signal in monkeys. RESULTS: Organ-level dosimetric analysis of mice receiving (64)Cu-MM-302 indicated that the heart was the organ receiving the highest radiation absorbed dose, due to extended liposomal circulation. However, PET/CT imaging indicated that (64)Cu-MM-302 administration resulted in heterogeneous exposure in the kidney, with a focus of (64)Cu activity in the renal pelvis. This result was reproduced in primates. Kidney micro-dosimetry analysis illustrated that the renal pelvis was the maximum exposed tissue in mice and squirrel monkeys, due to the highly concentrated signal within the small renal pelvis surface area. CONCLUSIONS: This study was used to select a starting clinical radiation dose of (64)Cu-MM-302 for PET/CT in patients with advanced HER2-positive breast cancer. Organ-level dosimetry and kidney micro-dosimetry results predicted that a radiation dose of 400 MBq of (64)Cu-MM-302 should be acceptable in patients.

6.
Nanomedicine ; 11(1): 155-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25200610

RESUMO

Effective drug delivery to tumors is a barrier to treatment with nanomedicines. Non-invasively tracking liposome biodistribution and tumor deposition in patients may provide insight into identifying patients that are well-suited for liposomal therapies. We describe a novel gradient-loadable chelator, 4-DEAP-ATSC, for incorporating (64)Cu into liposomal therapeutics for positron emission tomographic (PET). (64)Cu chelated to 4-DEAP-ATSC (>94%) was loaded into PEGylated liposomal doxorubicin (PLD) and HER2-targeted PLD (MM-302) with efficiencies >90%. (64)Cu-MM-302 was stable in human plasma for at least 48h. PET/CT imaging of xenografts injected with (64)Cu-MM-302 revealed biodistribution profiles that were quantitatively consistent with tissue-based analysis, and tumor (64)Cu positively correlated with liposomal drug deposition. This loading technique transforms liposomal therapeutics into theranostics and is currently being applied in a clinical trial (NCT01304797) to non-invasively quantify MM-302 tumor deposition, and evaluate its potential as a prognostic tool for predicting treatment outcome of nanomedicines.


Assuntos
Isótopos de Carbono/química , Quelantes/química , Doxorrubicina/análogos & derivados , Lipossomos/química , Nanomedicina/métodos , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Cobre/química , Radioisótopos de Cobre/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Transplante de Neoplasias , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
7.
Sci Rep ; 4: 3631, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24406986

RESUMO

Monocyte-derived antigen presenting cells (APC) are central mediators of the innate and adaptive immune response in inflammatory diseases. As such, APC are appropriate targets for therapeutic intervention to ameliorate certain diseases. APC differentiation, activation and functions are regulated by the NF-κB family of transcription factors. Herein, we examined the effect of NF-κB inhibition, via suppression of the IκB Kinase (IKK) complex, on APC function. Murine bone marrow-derived macrophages and dendritic cells (DC), as well as macrophage and DC lines, underwent rapid programmed cell death (PCD) after treatment with several IKK/NF-κB inhibitors through a TNFα-dependent mechanism. PCD was induced proximally by reactive oxygen species (ROS) formation, which causes a loss of mitochondrial membrane potential and activation of a caspase signaling cascade. NF-κB-inhibition-induced PCD of APC may be a key mechanism through which therapeutic targeting of NF-κB reduces inflammatory pathologies.


Assuntos
Células Apresentadoras de Antígenos/citologia , Apoptose/fisiologia , Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Caspase 8/metabolismo , Linhagem Celular , Ativação Enzimática , MAP Quinase Quinase 4/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos
8.
Mol Cancer Ther ; 12(9): 1816-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23723124

RESUMO

Numerous targeted nanotherapeutics have been described for potential treatment of solid tumors. Although attention has focused on antigen selection and molecular design of these systems, there has been comparatively little study of how cellular heterogeneity influences interaction of targeted nanoparticles with tumor cells. Antigens, such as HER2/ERBB2, are heterogeneously expressed across different indications, across patients, and within individual tumors. Furthermore, antigen expression in nontarget tissues necessitates optimization of the therapeutic window. Understanding the performance of a given nanoparticle under different regimens of antigen expression has the ability to inform patient selection and clinical development decisions. In this work, HER2-targeted liposomal doxorubicin was used as a model-targeted nanoparticle to quantitatively investigate the effect of HER2 expression levels on delivery of doxorubicin to the nucleus. We find quantitatively greater nuclear doxorubicin delivery with increasing HER2 expression, exhibiting a threshold effect at approximately 2 × 10(5) HER2 receptors/cell. Kinetic modeling indicated that the threshold effect arises from multiple low-affinity interactions between the targeted liposome and HER2. These results support previous data showing little or no uptake into human cardiomyocytes, which express levels of HER2 below the threshold. Finally, these results suggest that HER2-targeted liposomal doxorubicin may effectively target tumors that fall below traditional definitions of HER2-positive tumors, thereby expanding the potential population of patients that might benefit from this agent.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Neoplasias/tratamento farmacológico , Receptor ErbB-2/genética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos , Camundongos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo
9.
Diabetes ; 59(12): 3108-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20841608

RESUMO

OBJECTIVE: The purpose of the current study was to determine whether double-stranded adeno-associated virus (dsAAV)-mediated in vivo expression of ß-cell growth factors, glucagon-like peptide-1 (GLP-1) and the NK1 fragment of hepatocyte growth factor (HGF/NK1) in ß-cells, improves pathology in the db/db mouse model of type 2 diabetes. RESEARCH DESIGN AND METHODS; The glucoregulatory actions of GLP-1 and full-length HGF are well characterized. Here, we test the ability of HGF/NK1 to induce proliferation of exogenous islets and MIN6 ß-cells. In addition, we target both GLP-1 and HGF/NK1 to endogenous ß-cells using dsAAV vectors containing the mouse insulin-II promoter. We compare the abilities of these gene products to induce islet proliferation in vitro and in vivo and characterize their abilities to regulate diabetes after AAV-mediated delivery to endogenous islets of db/db mice. RESULTS: Recombinant HGF/NK1 induces proliferation of isolated islets, and dsAAV-mediated expression of both GLP-1 and HGF/NK1 induces significant ß-cell proliferation in vivo. Furthermore, both GLP-1 and HGF/NK1 expressed from dsAAV vectors enhance ß-cell mass and insulin secretion in vivo and significantly delay the onset of hyperglycemia in db/db mice. CONCLUSIONS: A single treatment with dsAAV vectors expressing GLP-1 or HGF/NK1 enhances islet growth and significantly improves pathology in a mouse model of type 2 diabetes. This represents the first example of a successful use of HGF/NK1 for diabetes therapy, providing support for direct AAV-mediated in vivo delivery of ß-cell growth factors as a novel therapeutic strategy for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/patologia , Peptídeo 1 Semelhante ao Glucagon/genética , Fator de Crescimento de Hepatócito/genética , Células Secretoras de Insulina/patologia , Animais , Divisão Celular/efeitos dos fármacos , Primers do DNA , Dependovirus/genética , Dependovirus/patogenicidade , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Fator de Crescimento de Hepatócito/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/farmacologia
10.
Cancer Immunol Immunother ; 59(11): 1685-96, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20652244

RESUMO

Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.


Assuntos
Vacinas Anticâncer/uso terapêutico , Proteínas do Capsídeo/imunologia , Linfoma de Células T/terapia , Mucina-1/imunologia , Vacinas contra Papillomavirus/uso terapêutico , Fragmentos de Peptídeos/imunologia , Animais , Proteínas do Capsídeo/genética , Bovinos , Ensaio de Imunoadsorção Enzimática , Humanos , Ativação Linfocitária , Linfoma de Células T/genética , Linfoma de Células T/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Papillomaviridae/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/imunologia , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Vírion/genética , Vírion/imunologia
11.
Curr Rheumatol Rep ; 10(5): 398-404, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18817645

RESUMO

Gene therapy offers great possibilities for treating rheumatoid arthritis (RA). Traditional surgical and pharmaceutical methods of treating RA have met with limited therapeutic success and have failed to produce a cure, but the past several years have seen extensive progress toward development of a gene therapy for arthritis. Numerous vectors and therapeutic genes have been investigated in animal models of arthritis, and the potential of gene therapy to treat or manage RA has been demonstrated in several clinical studies. Gene therapy offers the possibility of overcoming many of the limitations of current biologic therapies by providing long-term, high-level localized expression of therapeutic genes, potentially in as little as a single dose. In this review, we explore the advances in gene therapy for RA and summarize the recent preclinical and clinical data. In addition, we provide an overview of vectors and targets for RA gene therapy.


Assuntos
Artrite Reumatoide/terapia , Terapia Genética/métodos , Animais , Artrite Reumatoide/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos
12.
J Virol ; 81(6): 2792-804, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17192316

RESUMO

Matrix (M) protein mutants of vesicular stomatitis virus (VSV) are promising oncolytic agents for cancer therapy. Previous research has implicated Fas and PKR in apoptosis induced by other viruses. Here, we show that dominant-negative mutants of Fas and PKR inhibit M protein mutant virus-induced apoptosis. Most previous research has focused on the adapter protein FADD as a necessary transducer of Fas-mediated apoptosis. However, the expression of dominant-negative FADD had little effect on the induction of apoptosis by M protein mutant VSV. Instead, virus-induced apoptosis was inhibited by the expression of a dominant-negative mutant of the adapter protein Daxx. These data indicate that Daxx is more important than FADD for apoptosis induced by M protein mutant VSV. These results show that PKR- and Fas-mediated signaling play important roles in cell death during M protein mutant VSV infection and that Daxx has novel functions in the host response to virus infection by mediating virus-induced apoptosis.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteína Ligante Fas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , eIF-2 Quinase/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas Correpressoras , Proteína Ligante Fas/genética , Técnica Indireta de Fluorescência para Anticorpo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células L , Camundongos , Chaperonas Moleculares , Proteínas Nucleares/genética , Análise Serial de Proteínas , Transdução de Sinais , Vírus da Estomatite Vesicular Indiana/fisiologia , eIF-2 Quinase/genética
13.
J Virol ; 79(7): 4170-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15767418

RESUMO

Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.


Assuntos
Apoptose , Mutação , Vírus da Estomatite Vesicular Indiana/fisiologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/fisiologia , Substituição de Aminoácidos , Animais , Western Blotting , Caspase 12 , Caspase 8 , Caspase 9 , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular , Ativação Enzimática , Fluorometria , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...