Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617326

RESUMO

Through vaginal colonization, GBS causes severe pregnancy outcomes including neonatal sepsis and meningitis. Although intrapartum antibiotic prophylaxis (IAP) has reduced early-onset disease rates, persistent GBS colonization has been observed in patients following prophylaxis. To determine whether IAP selects for genomic signatures that enhance GBS survival and persistence in the vaginal tract, whole-genome sequencing was performed on 97 isolates from 58 patients before (prenatal) and after (postpartum) IAP/childbirth. Core-gene mutation analysis identified 7,025 mutations between the paired isolates. Three postpartum isolates accounted for 98% of mutations and were classified as "mutators" because of point mutations within DNA repair systems. In vitro assays revealed stronger biofilms in two mutators. These findings suggest that antibiotics select for mutations that promote survival in vivo, which increases the likelihood of transmission to neonates. They also demonstrate how mutators can provide a reservoir of beneficial mutations that enhance fitness and genetic diversity in the GBS population.

2.
J Cell Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595027

RESUMO

Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.

3.
J Cell Physiol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457273

RESUMO

A popular preprint server, bioRxiv, is important as a tool for increased visibility for life science research. If used properly, however, bioRxiv can also be an important tool for training, as it may expose trainees (degree-seeking students undertaking research or internships directly related to their field of study) to the peer review process. Here, we offer a comprehensive guide to using bioRxiv as a training tool, as well as offer suggestions for improvements in bioRxiv, including confusion that may be caused by bioRxiv articles appearing on PubMed.

4.
Biotechniques ; 76(4): 125-134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420889

RESUMO

Tweetable abstract Mitochondrial transplantation has been used to treat various diseases associated with mitochondrial dysfunction. Here, we highlight the considerations in quality control mechanisms that should be considered in the context of mitochondrial transplantation.


Assuntos
Mitocôndrias , Medicina de Precisão
5.
J Cell Physiol ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226956

RESUMO

A first-generation college student is typically defined as a student whose biological parent(s) or guardian(s) never attended college or who started but did not finish college. However, "first-generation" can represent diverse family education situations. The first-generation student community is a multifaceted, and intersectional group of individuals who frequently lack educational/financial resources to succeed and, consequently, require supportive environments with rigorous mentorship. However, first-generation students often do not make their identity as first-generation students known to others due to several psychosocial and academic factors. Therefore, they are often "invisible minorities" in higher education. In this paper, we describe the diverse family situations of first-generation students, further define "first-generation," and suggest five actions that first-generation trainees at the undergraduate/graduate stages can engage in to succeed in an academic climate. We also provide suggestions for mentors to accommodate first-generation students' unique experiences and equip them with tools to deliver intentional mentoring practices. We hope that this paper will help promote first-generation student success throughout the academic pipeline.

6.
Biotechniques ; 76(2): 46-51, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38084381

RESUMO

Tweetable abstract This perspective considers several avenues for future research on mitochondrial dynamics, stress, and DNA in outer space.


Assuntos
Mitocôndrias , Mitocôndrias/genética , Voo Espacial
7.
Adv Biol (Weinh) ; 8(1): e2300186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37607124

RESUMO

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.


Assuntos
Tecido Adiposo Marrom , Membranas Mitocondriais , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Envelhecimento
8.
Aging Cell ; 22(12): e14009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37960952

RESUMO

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.


Assuntos
Imageamento Tridimensional , Membranas Associadas à Mitocôndria , Camundongos , Animais , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
9.
ACS Infect Dis ; 9(12): 2401-2408, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37955242

RESUMO

Exposure to environmental toxicants (such as dioxins) has been epidemiologically linked to adverse reproductive health outcomes, including placental inflammation and preterm birth. However, the molecular underpinnings that govern these outcomes in gravid reproductive tissues remain largely unclear. Placental macrophages (also known as Hofbauer cells) are crucial innate immune cells that defend the gravid reproductive tract and help promote maternal-fetal tolerance. We hypothesized that exposure to environmental toxicants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could alter placental macrophage responses to inflammatory insults such as infection. To test this, placental macrophages were cultured in the presence or absence of TCDD and then infected with the perinatal pathogen Group B Streptococcus (GBS). Our results indicate that TCDD is lethal to placental macrophages at and above a 5 nM concentration and that sublethal dioxin exposure inhibits phagocytosis and cytokine production. Taken together, these results indicate that TCDD paralyzes placental macrophage responses to bacterial infection.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Nascimento Prematuro , Humanos , Gravidez , Recém-Nascido , Feminino , Placenta , Dibenzodioxinas Policloradas/toxicidade , Macrófagos
10.
STAR Protoc ; 4(4): 102591, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938976

RESUMO

Isolation of skeletal muscles allows for the exploration of many complex diseases. Here, we present a protocol for isolating mice skeletal muscle myoblasts and myotubes that have been differentiated through antibody validation. We describe steps for collecting and preparing murine skeletal tissue, myoblast cell maintenance, plating, and cell differentiation. We then detail procedures for cell incubation, immunostaining, slide preparation and storage, and imaging for immunofluorescence validation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Camundongos , Animais , Mioblastos , Diferenciação Celular/fisiologia , Imunofluorescência
11.
ACS Cent Sci ; 9(9): 1737-1749, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780357

RESUMO

Preterm birth affects nearly 10% of all pregnancies in the United States, with 40% of those due, in part, to infections. Streptococcus agalactiae (Group B Streptococcus, GBS) is one of the most common perinatal pathogens responsible for these infections. Current therapeutic techniques aimed to ameliorate invasive GBS infections are less than desirable and can result in complications in both the neonate and the mother. To this end, the need for novel therapeutic options is urgent. Human milk oligosaccharides (HMOs), an integral component of human breast milk, have been previously shown to possess antiadhesive and antimicrobial properties. To interrogate these characteristics, we examined HMO-mediated outcomes in both in vivo and ex vivo models of GBS infection utilizing a murine model of ascending GBS infection, an EpiVaginal human organoid tissue model, and ex vivo human gestational membranes. Supplementation of HMOs resulted in diminished adverse pregnancy outcomes, decreased GBS adherence to gestational tissues, decreased colonization within the reproductive tract, and reduced proinflammatory immune responses to GBS infection. Taken together, these results highlight the potential of HMOs as promising therapeutic interventions in perinatal health.

12.
Chembiochem ; 24(24): e202300410, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37800606

RESUMO

During placental formation, cytotrophoblasts (CTBs) fuse into multinucleate, microvilli-coated syncytiotrophoblasts (STBs), which contact maternal blood, mediating nutrient, metabolite, and gas exchange between mother and fetus, and providing a barrier against fetal infection. Trophoblasts remodel the surrounding extracellular matrix through the secretion of matrix metalloproteinases (MMPs). Maternal obesity and diabetes mellitus can negatively impact fetal development and may impair trophoblast function. We sought to model the impact of metabolic stress on STB function by examining MMP and hormone secretion. The BeWo CTB cell line was syncytialized to STB-like cells with forskolin. Cell morphology was examined by electron microscopy and immunofluorescence; phenotype was further assessed by ELISA and RT-qPCR. STBs were exposed to a metabolic stress cocktail (MetaC: 30 mM glucose, 10 nM insulin, and 0.1 mM palmitic acid). BeWo syncytialization was demonstrated by increased secretion of HCGß and progesterone, elevated syncytin gene expression (ERVW-1 and ERVFRD-1), loss of tight junctions, and increased surface microvilli. MetaC strongly suppressed syncytin gene expression (ERVW-1 and ERVFRD-1), suppressed HCGß and progesterone secretion, and altered both MMP-9 and MMP-2 production. Metabolic stress modeling diabetes and obesity altered BeWo STB hormone and MMP production in vitro.


Assuntos
Placenta , Progesterona , Feminino , Gravidez , Humanos , Placenta/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , Linhagem Celular
13.
Sci Adv ; 9(32): eade2693, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566649

RESUMO

Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Camundongos , Humanos , Animais , Campylobacter jejuni/fisiologia , Histonas , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Ativação de Neutrófilo , Inflamação
14.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577723

RESUMO

Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, we hypothesized that significant morphological changes in BAT mitochondria and cristae would be present with aging. We developed a quantitative three-dimensional (3D) electron microscopy approach to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, we investigated the 3D morphology of mitochondrial cristae in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, we found increases in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.

15.
Am J Physiol Heart Circ Physiol ; 325(5): H965-H982, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624101

RESUMO

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.


Assuntos
Mitocôndrias , Miocárdio , Humanos , Masculino , Camundongos , Animais , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Coração , Envelhecimento , Transdução de Sinais , Proteínas Mitocondriais/metabolismo
16.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292669

RESUMO

OPA1 is a dynamin-related GTPase that modulates various mitochondrial functions and is involved in mitochondrial morphology. There are eight different isoforms of OPA1 in humans and five different isoforms in mice that are expressed as short or long-form isoforms. These isoforms contribute to OPA1's ability to control mitochondrial functions. However, isolating OPA1 all long and short isoforms through western blot has been a difficult task. To address this issue, we outline an optimized western blot protocol to isolate 5 different isoforms of OPA1 on the basis of different antibodies. This protocol can be used to study changes in mitochondrial structure and function.

17.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292700

RESUMO

Proximity ligation assays (PLA) use specific antibodies to detect endogenous protein-protein interactions. PLA is a highly useful biochemical technique that allows two proteins within close proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein-protein interactions within mitochondria-endoplasmic reticulum contact sites (MERCs).

18.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292887

RESUMO

The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.

19.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292961

RESUMO

Isolation of skeletal muscles allows for the exploration of many complex diseases. Fibroblasts and myoblast play important roles in skeletal muscle morphology and function. However, skeletal muscles are complex and made up of many cellular populations and validation of these populations is highly important. Therefore, in this article, we discuss a comprehensive method to isolate mice skeletal muscle, create satellite cells for tissue culture, and use immunofluorescence to validate our approach.

20.
Adv Biol (Weinh) ; 7(8): e2300122, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246245

RESUMO

Machine learning has proven useful in analyzing complex biological data and has greatly influenced the course of research in structural biology and precision medicine. Deep neural network models oftentimes fail to predict the structure of complex proteins and are heavily dependent on experimentally determined structures for their training and validation. Single-particle cryogenic electron microscopy (cryoEM) is also advancing the understanding of biology and will be needed to complement these models by continuously supplying high-quality experimentally validated structures for improvements in prediction quality. In this perspective, the significance of structure prediction methods is highlighted, but the authors also ask, what if these programs cannot accurately predict a protein structure important for preventing disease? The role of cryoEM is discussed to help fill the gaps left by artificial intelligence predictive models in resolving targetable proteins and protein complexes that will pave the way for personalized therapeutics.


Assuntos
Inteligência Artificial , Medicina de Precisão , Microscopia Crioeletrônica/métodos , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...