Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38647297

RESUMO

For many years, the recombination of excited ions of argon, Ar+(P1/22), has been assumed negligible under ambient conditions as compared to the recombination of ground-state ions, Ar+(P3/22). This opinion was confronted with detailed experimental results that seem to clearly support it. Here, we propose a new interpretation in light of our recent calculations, which shows that the recombination efficiency is comparable for both fine-structure states. Noteworthily, in our model leading to a picture consistent with the experiment, residual dimer ions emerge from Ar+(P1/22) due to non-adiabatic dynamics effects and interplay in measured data.

2.
Philos Trans A Math Phys Eng Sci ; 375(2092)2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28320900

RESUMO

We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene [Formula: see text], pyrene [Formula: see text] and coronene [Formula: see text] at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and C2H2 (recognized as the ethyne molecule) were identified as major dissociation channels. The H/C2H2 ratio was found to increase with PAH size and to decrease with energy. For [Formula: see text], which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25019899

RESUMO

Collision cross sections and transport coefficients are calculated for Ar{+} ions, in the ground state {2}P_{3/2} and in the metastable state {2}P_{1/2}, colliding with their parent gas. Differential and integral collision cross sections are obtained using a numerical integration of the nuclear Schrödinger equation for several published interaction potentials. The Cohen-Schneider semi-empirical model is used for the inclusion of the spin-orbit interaction. The corresponding differential collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients for each initial ion state over a wide range of reduced electric field. Ion swarm data results are then compared with available experimental data for different proportions of ions in each state. This allows us to identify the most reliable interaction potential which reproduces ion transport coefficients falling within the experimental error bars. Such ion transport data will be used in electrohydrodynamic and chemical kinetic models of the low temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.


Assuntos
Argônio/química , Modelos Químicos , Modelos Estatísticos , Gases em Plasma/química , Teoria Quântica , Cinética , Espalhamento de Radiação
4.
Artigo em Inglês | MEDLINE | ID: mdl-24229290

RESUMO

This work is devoted to the calculation of transport coefficients for He(2)(+) ions in gaseous He at intermediate reduced electric fields. These swarm data are of great interest for a better understanding of the mechanisms of formation and propagation of the fast plasma bullets or ionization waves observed in dielectric barrier plasma jet devices. For transport data, the collision cross sections required are determined from several theoretical methods based on quantum, semiclassical, and hybrid approaches and a diatomics-in-molecules model for the potential energy surfaces of He(2)(+). The corresponding collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients over a wide range of reduced electric fields extending over the experimental range. Calculated transport coefficients are compared with available experimental data at low electric fields. Moreover, an extrapolation method is used in order to determine the reduced mobility for stronger fields. A critical discussion has been performed on the pertinence and the reliability of these different methods of determination of collision cross sections needed for the calculation of ion transport data. Such ion data will be used in electrohydrodynamic and chemical kinetic models of the low-temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.

5.
J Phys Chem A ; 116(11): 2945-60, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22360282

RESUMO

Adiabatic and diabatic potential energy curves and the permanent and transition dipole moments of the low-lying electronic states of the LiRb molecule dissociating into Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d) + Li(2s, 2p) have been investigated. The molecular calculations are performed with an ab initio approach based on nonempirical pseudopotentials for Rb(+) and Li(+) cores, parametrized l-dependent core polarization potentials and full configuration interaction calculations. The derived spectroscopic constants (R(e), D(e), T(e), ω(e), ω(e)x(e), and B(e)) of the ground state and lower excited states are in good agreement with the available theoretical works. However, the 8-10(1)Σ(+), 8-10(3)Σ(+), 6(1,3)Π, and 3(1,3)Δ excited states are studied for the first time. In addition, to the potential energy, accurate permanent and transition dipole moments have been determined for a wide interval of internuclear distances. The permanent dipole moment of LiRb has revealed ionic characters both relating to electron transfer and yielding Li(-)Rb(+) and Li(+)Rb(-) arrangements. The diabatic potential energy for the (1,3)Σ(+), (1,3)Π, and (1,3)Δ symmetries has been performed for this molecule for the first time. The diabatization method is based on variational effective Hamiltonian theory and effective metric, where the adiabatic and diabatic states are connected by an appropriate unitary transformation.

6.
J Phys Chem A ; 114(24): 6657-68, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20518475

RESUMO

For nearly all the states dissociating into Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s) and Li (2s, 2p, 3s), we present an extensive adiabatic study for (1,3)Sigma(+), (1,3)Pi, and (1,3)Delta symmetries of the LiCs molecule. We have used an ab initio approach based on nonempirical pseudopotentials, parametrized l-dependent polarization potentials, and full configuration interaction calculations. A diabatisation procedure based on the effective Hamiltonian theory and an effective metric is used to produce the quasi-diabatic potential energy for all studied states. The spectroscopic constants (R(e), D(e), T(e), omega(e), omega(e)x(e), and B(e)) of these states are derived and compared with the available theoretical and experimental works. In addition to the potential energies, accurate permanent and transition dipole moment have been determined for a wide range of internuclear distances. The adiabatic permanent dipole moment for the first 10 (1)Sigma(+) electronic states has revealed ionic characters relating to electron transfer and yielding both Li(-)Cs(+) and Li(+)Cs(-) arrangements. The quasi-diabatic permanent moments show linear behaviors, especially at intermediate and large distance. The transition dipole moment between neighbor states has revealed many peaks located around the avoided crossing positions.

7.
J Chem Phys ; 125(11): 114307, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16999474

RESUMO

The dynamics and thermodynamics of small Ar(n) (+) clusters, n=3, 6, and 9, are investigated using molecular dynamics (MD) and exchange Monte Carlo (MC) simulations. A diatomic-in-molecule Hamiltonian provides an accurate model for the electronic ground state potential energy surface. The microcanonical caloric curves calculated from MD and MC methods are shown to agree with each other, provided that the rigorous conservation of angular momentum is accounted for in the phase space density of the MC simulations. The previously proposed projective partition of the kinetic energy is used to assist MD simulations in interpreting the cluster dynamics in terms of inertial, internal, and external modes. The thermal behavior is correlated with the nature of the charged core in the cluster by computing a dedicated charge localization order parameter. We also perform systematic quenches to establish a connection with the various isomers. We find that the Ar(3) (+) cluster is very stable in its linear ground state geometry up to about 300 K, and then isomerizes to a T-shaped isomer in which a quasineutral atom lies around a charged dimer. In Ar(6) (+) and Ar(9) (+), the covalent trimer core is solvated by neutral atoms, and the weakly bound solvent shell melts at much lower energies, occasionally leading to a tetramer or pentamer core with weakly charged extremities. At high energies the core itself becomes metastable and the cluster transforms into Ar(2) (+) solvated by a fluid of neutral argon atoms.

8.
J Phys Chem A ; 110(4): 1561-8, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16435817

RESUMO

Unimolecular dissociation of neutral and charged argon clusters is theoretically investigated in the context of calorimetric measurements. The temperature of the product cluster is estimated from the distribution of the translational kinetic energy released (KER), assumed to have the form f(epsilon) approximately epsilon(alpha) exp(-epsilon/k(B)T). Phase space theory (PST) in its orbiting transition state (OTS) version is validated by comparing its predictions to the results of large-scale molecular dynamics simulations. The temperatures estimated from the KER distributions are seen to be generally lower than the actual microcanonical temperature computed from independent Monte Carlo simulations of the product cluster at thermal equilibrium. On the basis of these deviations, the various approximations leading from the rigorous PST/OTS treatment to the assumed exponential form are critically discussed. In the case of Ar(n)(+) clusters, the use of a quantum diatomic-in-molecules Hamiltonian constructed from recent ab initio calculations reveals some possible inadequacies of the 1/r(4) ion/dipole interaction at intermediate distances due to some residual charge transfer.

9.
Proteins ; 41(1): 1-7, 2000 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10944387

RESUMO

Normal mode analysis of proteins of various sizes, ranging from 46 (crambin) up to 858 residues (dimeric citrate synthase) were performed, by using standard approaches, as well as a recently proposed method that rests on the hypothesis that low-frequency normal modes of proteins can be described as pure rigid-body motions of blocks of consecutive amino-acid residues. Such a hypothesis is strongly supported by our results, because we show that the latter method, named RTB, yields very accurate approximations for the low-frequency normal modes of all proteins considered. Moreover, the quality of the normal modes thus obtained depends very little on the way the polypeptidic chain is split into blocks. Noteworthy, with six amino-acids per block, the normal modes are almost as accurate as with a single amino-acid per block. In this case, for a protein of n residues and N atoms, the RTB method requires the diagonalization of an n x n matrix, whereas standard procedures require the diagonalization of a 3N x 3N matrix. Being a fast method, our approach can be useful for normal mode analyses of large systems, paving the way for further developments and applications in contexts for which the normal modes are needed frequently, as for example during molecular dynamics calculations.


Assuntos
Proteínas/química , Algoritmos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...