Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Radiother Oncol ; 173: 262-268, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714807

RESUMO

BACKGROUND AND PURPOSE: During radiotherapy treatment planning, avoidance of organs at risk (OARs) is important. An international consensus-based delineation guideline was recently published with 34 OARs in the brain. We developed an MR-based OAR autosegmentation atlas and evaluated its performance compared to manual delineation. MATERIALS AND METHODS: Anonymized cerebral T1-weighted MR scans (voxel size 0.9 × 0.9 × 0.9 mm3) were available. OARs were manually delineated according to international consensus. Fifty MR scans were used to develop the autosegmentation atlas in a commercially available treatment planning system (Raystation®). The performance of this atlas was tested on another 40 MR scans by automatically delineating 34 OARs, as defined by the 2018 EPTN consensus. Spatial overlap between manual and automated delineations was determined by calculating the Dice similarity coefficient (DSC). Two radiation oncologists determined the quality of each automatically delineated OAR. The time needed to delineate all OARs manually or to adjust automatically delineated OARs was determined. RESULTS: DSC was ≥ 0.75 in 31 (91 %) out of 34 automated OAR delineations. Delineations were rated by radiation oncologists as excellent or good in 29 (85 %) out 34 OAR delineations, while 4 were rated fair (12 %) and 1 was rated poor (3 %). Interobserver agreement between the radiation oncologists ranged from 77-100 % per OAR. The time to manually delineate all OARs was 88.5 minutes, while the time needed to adjust automatically delineated OARs was 15.8 minutes. CONCLUSION: Autosegmentation of OARs enables high-quality contouring within a limited time. Accurate OAR delineation helps to define OAR constraints to mitigate serious complications and helps with the development of NTCP models.


Assuntos
Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Encéfalo/diagnóstico por imagem , Consenso , Humanos , Imageamento por Ressonância Magnética
2.
Radiother Oncol ; 154: 110-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950531

RESUMO

BACKGROUND AND PURPOSE: Vacuum cushion immobilization is commonly used during stereotactic body radiotherapy (SBRT) to reduce intrafraction motion. We investigated target and bony anatomy intrafraction motion (translations and rotations) during online adaptive SBRT on an MR-linac for pelvic/para-aortic lymph node metastases with and without vacuum cushion. MATERIALS AND METHODS: Thirty-nine patients underwent 5x7 Gy SBRT on a 1.5T MR-linac, 19 patients were treated with vacuum cushion, 19 without and 1 patient sequentially with and without. Intrafraction motion was calculated for target lymph nodes (GTVs) and nearby bony anatomy, for three time intervals (pre-position verification (PV), pre-post, PV-post, relating to the online MRI scans) per treatment fraction. RESULTS: Vacuum cushion immobilization significantly reduced anterior-posterior translations for the pre-PV and pre-post intervals, for bony anatomy and pre-post interval for GTV (p < 0.05). Mean GTV intrafraction motion reduction in posterior direction was 0.7 mm (95% confidence interval 0.3-1.1 mm) for pre-post interval (mean time = 32 min). Shifts in other directions were not significantly reduced. More motion occurred in pre-PV interval than in PV-post interval (mean time = 16 min for both); vacuum cushion immobilization did not reduce intrafraction motion during the beam-on period. CONCLUSION: A vacuum cushion reduces GTV and bony anatomy intrafraction motion in posterior direction during pelvic/para-aortic lymph node SBRT. This motion reduction was found for the first 16 min per session. For single targets this motion can be corrected for directly with an MR-linac. Intrafraction motion was not reduced during the second half of the session, the period of radiotherapy delivery on an MR-linac. Vacuum cushion immobilization may not be necessary for patients with single lymph node oligometastases undergoing SBRT on an MR-linac.


Assuntos
Radiocirurgia , Humanos , Linfonodos , Movimento , Planejamento da Radioterapia Assistida por Computador , Vácuo
3.
Radiother Oncol ; 146: 118-125, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32146257

RESUMO

BACKGROUND AND PURPOSE: Patients were treated at our institute for single and multiple lymph node oligometastases on the 1.5T MR-linac since August 2018. The superior soft-tissue contrast and additional software features of the MR-linac compared to CBCT-linacs allow for online adaptive treatment planning. The purpose of this study was to perform a target coverage and dose criteria based evaluation of the clinically delivered online adaptive radiotherapy treatment compared with conventional CBCT-linac treatment. MATERIALS AND METHODS: Patient data was used from 14 patients with single lymph node oligometastases and 6 patients with multiple (2-3) metastases. All patients were treated on the 1.5T MR-linac with a prescribed dose of 5 × 7 Gy to 95% of the PTV and a CBCT-linac plan was created for each patient. The difference in target coverage between these plans was compared and plans were evaluated based on dose criteria for each fraction after calculating the CBCT-plan on the daily anatomy. The GTV coverage was evaluated based on the online planning and the post-delivery MRI. RESULTS: For both single and multiple lymph node oligometastases the GTV V35Gy had a median value of 100% for both the MR-linac plans and CBCT-plans pre- and post-delivery and did not significantly differ. The percentage of plans that met all dose constraints was improved from 19% to 84% and 20% to 67% for single and multiple lymph node cases, respectively. CONCLUSION: Target coverage and dose criteria based evaluation of the first clinical 1.5T MR-linac SBRT treatments of lymph node oligometastases compared with conventional CBCT-linac treatment shows a smaller amount of unplanned violations of high dose criteria. The GTV coverage was comparable. Benefit is primarily gained in patients treated for multiple lymph node oligometastases: geometrical deformations are accounted for, dose can be delivered in one plan and margins can be reduced.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador
4.
Oncotarget ; 8(33): 55582-55592, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903445

RESUMO

BACKGROUND: In this study, our aim was to identify molecular aberrations predictive for response to everolimus, an mTOR inhibitor, regardless of tumor type. METHODS: To generate hypotheses about potential markers for sensitivity to mTOR inhibition, drug sensitivity and genomic profiles of 835 cell lines were analyzed. Subsequently, a multicenter study was conducted. Patients with advanced solid tumors lacking standard of care treatment options were included and underwent a pre-treatment tumor biopsy to enable DNA sequencing of 1,977 genes, derive copy number profiles and determine activation status of pS6 and pERK. Treatment benefit was determined according to TTP ratio and RECIST. We tested for associations between treatment benefit and single molecular aberrations, clusters of aberrations and pathway perturbation. RESULTS: Cell line screens indicated several genes, such as PTEN (P = 0.016; Wald test), to be associated with sensitivity to mTOR inhibition. Subsequently 73 patients were included, of which 59 started treatment with everolimus. Response and molecular data were available from 43 patients. PTEN aberrations, i.e. copy number loss or mutation, were associated with treatment benefit (P = 0.046; Fisher's exact test). CONCLUSION: Loss-of-function aberrations in PTEN potentially represent a tumor type agnostic biomarker for benefit from everolimus and warrants further confirmation in subsequent studies.

5.
Oncologist ; 22(1): 33-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662884

RESUMO

BACKGROUND: The discovery of novel biomarkers that predict treatment response in advanced cancer patients requires acquisition of high-quality tumor samples. As cancer evolves over time, tissue is ideally obtained before the start of each treatment. Preferably, samples are freshly frozen to allow analysis by next-generation DNA/RNA sequencing (NGS) but also for making other emerging systematic techniques such as proteomics and metabolomics possible. Here, we describe the first 469 image-guided biopsies collected in a large collaboration in The Netherlands (Center for Personalized Cancer Treatment) and show the utility of these specimens for NGS analysis. PATIENTS AND METHODS: Image-guided tumor biopsies were performed in advanced cancer patients. Samples were fresh frozen, vital tumor cellularity was estimated, and DNA was isolated after macrodissection of tumor-rich areas. Safety of the image-guided biopsy procedures was assessed by reporting of serious adverse events within 14 days after the biopsy procedure. RESULTS: Biopsy procedures were generally well tolerated. Major complications occurred in 2.1%, most frequently consisting of pain. In 7.3% of the percutaneous lung biopsies, pneumothorax requiring drainage occurred. The majority of samples (81%) contained a vital tumor percentage of at least 30%, from which at least 500 ng DNA could be isolated in 91%. Given our preset criteria, 74% of samples were of sufficient quality for biomarker discovery. The NGS results in this cohort were in line with those in other groups. CONCLUSION: Image-guided biopsy procedures for biomarker discovery to enable personalized cancer treatment are safe and feasible and yield a highly valuable biobank. The Oncologist 2017;22:33-40Implications for Practice: This study shows that it is safe to perform image-guided biopsy procedures to obtain fresh frozen tumor samples and that it is feasible to use these biopsies for biomarker discovery purposes in a Dutch multicenter collaboration. From the majority of the samples, sufficient DNA could be yielded to perform next-generation sequencing. These results indicate that the way is paved for consortia to prospectively collect fresh frozen tumor tissue.


Assuntos
Bancos de Espécimes Biológicos , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Adulto , Idoso , Feminino , Humanos , Biópsia Guiada por Imagem , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Países Baixos
6.
PLoS One ; 11(2): e0149405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919633

RESUMO

BACKGROUND: Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making. METHOD: We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering. RESULTS: Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5% concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detection of low-frequency variants. The reliability of mutation analysis could be further improved with manual inspection of sequence data. CONCLUSION: Targeted NGS can be reliably implemented in cancer diagnostics using both FFPE and FF tissue when using appropriate analysis settings, even with low input DNA.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Formaldeído , Humanos , Neoplasias/patologia , Inclusão em Parafina , Reprodutibilidade dos Testes , Fixação de Tecidos
7.
Proc Natl Acad Sci U S A ; 112(43): 13308-11, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460009

RESUMO

Tumor organoids are 3D cultures of cancer cells. They can be derived from the tumor of each individual patient, thereby providing an attractive ex vivo assay to tailor treatment. Using patient-derived tumor organoids for this purpose requires that organoids derived from biopsies maintain the genetic diversity of the in vivo tumor. In this study tumor biopsies were obtained from 14 patients with metastatic colorectal cancer (i) to test the feasibility of organoid culture from metastatic biopsy specimens and (ii) to compare the genetic diversity of patient-derived tumor organoids and the original tumor biopsy. Genetic analysis was performed using SOLiD sequencing for 1,977 cancer-relevant genes. Copy number profiles were generated from sequencing data using CopywriteR. Here we demonstrate that organoid cultures can be established from tumor biopsies of patients with metastatic colorectal cancer with a success rate of 71%. Genetic analysis showed that organoids reflect the metastasis from which they were derived. Ninety percent of somatic mutations were shared between organoids and biopsies from the same patient, and the DNA copy number profiles of organoids and the corresponding original tumor show a correlation of 0.89. Most importantly, none of the mutations that were found exclusively in either the tumor or organoid culture are in driver genes or genes amenable for drug targeting. These findings support further exploration of patient-derived organoids as an ex vivo platform to personalize anticancer treatment.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/genética , Variação Genética/genética , Metástase Neoplásica/genética , Organoides/citologia , Organoides/crescimento & desenvolvimento , Protocolos Antineoplásicos/normas , Sequência de Bases , Neoplasias Colorretais/tratamento farmacológico , Genes Neoplásicos/genética , Humanos , Dados de Sequência Molecular , Organoides/química , Medicina de Precisão/métodos , Análise de Sequência de DNA
8.
Pigment Cell Melanoma Res ; 28(3): 318-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25515853

RESUMO

Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three-dimensional imaging. In all patients, only a subset of lesions progressed. Next-generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib-resistant patient-derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments.


Assuntos
Diagnóstico por Imagem , Resistencia a Medicamentos Antineoplásicos/genética , Heterogeneidade Genética , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/uso terapêutico , Biópsia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Indóis/farmacologia , Melanoma/genética , Melanoma/patologia , Metástase Neoplásica , Sulfonamidas/farmacologia , Vemurafenib
9.
Future Oncol ; 10(3): 417-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24559448

RESUMO

Tumor heterogeneity is regarded as a major obstacle to successful personalized cancer medicine. The lack of reliable response assays reflective of in vivo tumor heterogeneity and associated resistance mechanisms hampers identification of reliable biomarkers. By contrast, oncogene addiction and paracrine signaling enable systemic responses despite tumor heterogeneity. This strengthens researchers in their efforts towards personalized cancer medicine. Given the fact that tumor heterogeneity is an integral part of cancer evolution, diagnostic tools need to be developed in order to better understand the dynamics within a tumor. Ultra-deep sequencing may reveal future resistant clones within a (liquid) tumor biopsy. On-treatment biopsies may provide insight into intrinsic or acquired drug resistance. Subsequently, upfront combinatorial treatment or sequential therapy strategies may forestall drug resistance and improve patient outcome. Finally, innovative response assays, such as organoid cultures or patient-derived tumor xenografts, provide an extra dimension to correlate molecular profiles with drug efficacy and control cancer growth.


Assuntos
Neoplasias/tratamento farmacológico , Medicina de Precisão , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo
10.
J Clin Oncol ; 31(15): 1842-8, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23589552

RESUMO

In the last decade, an overwhelming number of genetic aberrations have been discovered and linked to the development of treatment for cancer. With the rapid advancement of next-generation sequencing (NGS) techniques, it is expected that large-scale DNA analyses will increasingly be used to select patients for treatment with specific anticancer agents. Personalizing cancer treatment has many advantages, but sequencing germline DNA as reference material for interpreting cancer genetics may have consequences that extend beyond providing cancer care for an individual patient. In sequencing germline DNA, mutations may be encountered that are associated with increased susceptibility not only to hereditary cancer syndromes but also to other diseases; in those cases, disclosing germline data could be clinically relevant and even lifesaving. In the context of personal autonomy, it is necessary to develop an ethical and legal framework for how to deal with identified hereditary disease susceptibilities and how to return the data to patients and their families. Because clear legislation is lacking, we need to establish guidelines on disclosure of genetic information and, in the process, we need to balance privacy issues with the potential advantages and drawbacks of sharing genetic data with patients and their relatives. Importantly, a strong partnership with patients is critical for understanding how to maximize the translation of genetic information for the benefit of patients with cancer. This review discusses the ethical, legal, and counseling issues surrounding disclosure of genetic information generated by NGS to patients with cancer and their relatives. We also provide a framework for returning these genetic results by proposing a design for a qualified disclosure policy.


Assuntos
Revelação/ética , Aconselhamento Genético/ética , Predisposição Genética para Doença/genética , Mutação , Neoplasias/genética , Confidencialidade/ética , Confidencialidade/legislação & jurisprudência , Confidencialidade/psicologia , Revelação/legislação & jurisprudência , Aconselhamento Genético/legislação & jurisprudência , Aconselhamento Genético/psicologia , Testes Genéticos/ética , Testes Genéticos/legislação & jurisprudência , Humanos , Oncologia/ética , Oncologia/legislação & jurisprudência , Oncologia/métodos , Neoplasias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...