Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Nat Commun ; 14(1): 5053, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598178

RESUMO

Brain exposure of systemically administered biotherapeutics is highly restricted by the blood-brain barrier (BBB). Here, we report the engineering and characterization of a BBB transport vehicle targeting the CD98 heavy chain (CD98hc or SLC3A2) of heterodimeric amino acid transporters (TVCD98hc). The pharmacokinetic and biodistribution properties of a CD98hc antibody transport vehicle (ATVCD98hc) are assessed in humanized CD98hc knock-in mice and cynomolgus monkeys. Compared to most existing BBB platforms targeting the transferrin receptor, peripherally administered ATVCD98hc demonstrates differentiated brain delivery with markedly slower and more prolonged kinetic properties. Specific biodistribution profiles within the brain parenchyma can be modulated by introducing Fc mutations on ATVCD98hc that impact FcγR engagement, changing the valency of CD98hc binding, and by altering the extent of target engagement with Fabs. Our study establishes TVCD98hc as a modular brain delivery platform with favorable kinetic, biodistribution, and safety properties distinct from previously reported BBB platforms.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Camundongos , Distribuição Tecidual , Anticorpos , Engenharia , Macaca fascicularis
3.
Clin Transl Sci ; 16(7): 1134-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36908269

RESUMO

Phase I oncology clinical trials often comprise a limited number of patients representing different disease subtypes who are divided into cohorts receiving treatment(s) at different dosing levels and schedules. Here, we leverage a previously developed quantitative systems pharmacology model of the anti-CD20/CD3 T-cell engaging bispecific antibody, mosunetuzumab, to account for different dosing regimens and patient heterogeneity in the phase I study to inform clinical dose/exposure-response relationships and to identify biological determinants of clinical response. We developed a novel workflow to generate digital twins for each patient, which together form a virtual population (VPOP) that represented variability in biological, pharmacological, and tumor-related parameters from the phase I trial. Simulations based on the VPOP predict that an increase in mosunetuzumab exposure increases the proportion of digital twins with at least a 50% reduction in tumor size by day 42. Simulations also predict a left-shift of the exposure-response in patients diagnosed with indolent compared to aggressive non-Hodgkin's lymphoma (NHL) subtype; this increased sensitivity in indolent NHL was attributed to the lower inferred values of tumor proliferation rate and baseline T-cell infiltration in the corresponding digital twins. Notably, the inferred digital twin parameters from clinical responders and nonresponders show that the potential biological difference that can influence response include tumor parameters (tumor size, proliferation rate, and baseline T-cell infiltration) and parameters defining the effect of mosunetuzumab on T-cell activation and B-cell killing. Finally, the model simulations suggest intratumor expansion of pre-existing T-cells, rather than an influx of systemically expanded T-cells, underlies the antitumor activity of mosunetuzumab.


Assuntos
Antineoplásicos , Linfoma não Hodgkin , Humanos , Antineoplásicos/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Linfócitos T , Linfócitos B , Biomarcadores
4.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635496

RESUMO

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Microglia , Barreira Hematoencefálica , Distribuição Tecidual , Anticorpos , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana , Receptores Imunológicos/genética
5.
CPT Pharmacometrics Syst Pharmacol ; 11(9): 1268-1277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35857704

RESUMO

Asthma is a complex, heterogeneous disease with a high unmet medical need, despite therapies targeting a multitude of pathways. The ability to quantitatively integrate preclinical and clinical data on these pathways could aid in the development and testing of novel targets and therapeutics. In this work, we develop a computational model of asthma biology, including key cell types and mediators, and create a virtual population capturing clinical heterogeneity. The simulated responses to therapies targeting IL-13, IL-4Rα, IL-5, IgE, and TSLP demonstrate agreement with clinical endpoints and biomarkers of type 2 (T2) inflammation, including blood eosinophils, FEV1, IgE, and FeNO. We use the model to explore the potential benefit of targeting the IL-33 pathway with anti-IL-33 and anti-ST2. Model predictions are compared with data on blood eosinophils, FeNO, and FEV1 from recent anti-IL-33 and anti-ST2 trials and used to interpret trial results based on pathway biology and pharmacology. Results of sensitivity analyses on the contributions of IL-33 to the predicted biomarker changes suggest that anti-ST2 therapy reduces circulating blood eosinophil levels primarily through its impact on eosinophil progenitor maturation and IL-5-dependent survival, and induces changes in FeNO and FEV1 through its effect on immune cells involved in T2 cytokine production. Finally, we also investigate the impact of ST2 genetics on the conferred benefit of anti-ST2. The model includes representation of a wide array of biologic mechanisms and interventions that will provide mechanistic insight and support clinical program design for a wide range of novel therapies during drug development.


Assuntos
Asma , Interleucina-5 , Eosinófilos , Humanos , Imunoglobulina E , Proteína 1 Semelhante a Receptor de Interleucina-1
6.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 616-627, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34850607

RESUMO

Several PI3K inhibitors are in clinical development for the treatment of various forms of cancers, including pan-PI3K inhibitors targeting all four PI3K isoforms (α, ß, γ, and δ), and isoform-selective inhibitors. Diarrhea and immune-mediated colitis are among the adverse events observed with PI3K inhibition which limits the maximal tolerated dose. A quantitative systems pharmacology model was developed to investigate PI3K-inhibitor-induced colitis. The effects of individual PI3K isoforms on relevant cellular pathways were incorporated into a mechanistic representation of mucosal inflammation. A virtual clinical population captures the observed clinical variability in the onset timing and rates of diarrhea and colitis for seven clinically tested PI3K inhibitors. Model-based analysis suggests that colitis development is governed by both the inhibition of PI3Kδ, which drives T cell differentiation and proliferation, and PI3Kα, which regulates epithelial barrier integrity. Specifically, when PI3Kα is inhibited below a given threshold, epithelial barrier dysfunction precipitates an exaggerated T effector response due to PI3Kδ-inhibition, leading to risk of diarrhea and colitis. This synergy explains why the lowest diarrhea and colitis rates are seen with the weakest PI3Kδ inhibition (alpelisib), and higher rates are seen with strong PI3Kδ inhibition if PI3Kα is even mildly inhibited (e.g., idelalisib), whereas strong PI3Kδ inhibition in the absence of PI3Kα inhibition does not result in high colitis rates (umbralisib). Thus, the model-based analysis suggests that PI3Kα and δ inhibition play unique but synergistic roles in driving colitis. Finally, we explore if and how dose-regimen might influence colitis rates for molecules that inhibit both PI3Kα and PI3Kδ.


Assuntos
Colite , Fosfatidilinositol 3-Quinases , Colite/induzido quimicamente , Diarreia/induzido quimicamente , Humanos , Farmacologia em Rede , Inibidores de Fosfoinositídeo-3 Quinase , Isoformas de Proteínas
7.
AAPS J ; 23(3): 60, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931790

RESUMO

The pharmaceutical industry is actively applying quantitative systems pharmacology (QSP) to make internal decisions and guide drug development. To facilitate the eventual development of a common framework for assessing the credibility of QSP models for clinical drug development, scientists from US Food and Drug Administration and the pharmaceutical industry organized a full-day virtual Scientific Exchange on July 1, 2020. An assessment form was used to ensure consistency in the evaluation process. Among the cases presented, QSP was applied to various therapeutic areas. Applications mostly focused on phase 2 dose selection. Model transparency, including details on expert knowledge and data used for model development, was identified as a major factor for robust model assessment. The case studies demonstrated some commonalities in the workflow of QSP model development, calibration, and validation but differ in the size, scope, and complexity of QSP models, in the acceptance criteria for model calibration and validation, and in the algorithms/approaches used for creating virtual patient populations. Though efforts are being made to build the credibility of QSP models and the confidence is increasing in applying QSP for internal decisions at the clinical stages of drug development, there are still many challenges facing QSP application to late stage drug development. The QSP community needs a strategic plan that includes the ability and flexibility to Adapt, to establish Common expectations for model Credibility needed to inform drug Labeling and patient care, and to AIM to achieve the goal (ACCLAIM).


Assuntos
Desenvolvimento de Medicamentos/métodos , Colaboração Intersetorial , Modelos Biológicos , Biologia de Sistemas/métodos , Congressos como Assunto , Indústria Farmacêutica/organização & administração , Humanos , Estados Unidos , United States Food and Drug Administration/organização & administração
8.
NPJ Syst Biol Appl ; 6(1): 28, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859946

RESUMO

Mosunetuzumab, a T-cell dependent bispecific antibody that binds CD3 and CD20 to drive T-cell mediated B-cell killing, is currently being tested in non-Hodgkin lymphoma. However, potent immune stimulation with T-cell directed therapies poses the risk of cytokine release syndrome, potentially limiting dose and utility. To understand mechanisms behind safety and efficacy and explore safety mitigation strategies, we developed a novel mechanistic model of immune and antitumor responses to the T-cell bispecifics (mosunetuzumab and blinatumomab), including the dynamics of B- and T-lymphocytes in circulation, lymphoid tissues, and tumor. The model was developed and validated using mosunetuzumab nonclinical and blinatumomab clinical data. Simulations delineated mechanisms contributing to observed cell and cytokine (IL6) dynamics and predicted that initial step-fractionated dosing limits systemic T-cell activation and cytokine release without compromising tumor response. These results supported a change to a step-fractionated treatment schedule of mosunetuzumab in the ongoing Phase I clinical trial, enabling safer administration of higher doses.


Assuntos
Especificidade de Anticorpos , Antígenos CD20/imunologia , Complexo CD3/imunologia , Ensaios Clínicos Fase I como Assunto , Síndrome da Liberação de Citocina/induzido quimicamente , Linfoma não Hodgkin/tratamento farmacológico , Modelos Biológicos , Síndrome da Liberação de Citocina/imunologia , Humanos , Linfoma não Hodgkin/imunologia , Risco , Pesquisa Translacional Biomédica
9.
CPT Pharmacometrics Syst Pharmacol ; 9(3): 165-176, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957304

RESUMO

Quantitative systems pharmacology (QSP) models are often implemented using a wide variety of technical workflows and methodologies. To facilitate reproducibility, transparency, portability, and reuse for QSP models, we have developed gQSPSim, a graphical user interface-based MATLAB application that performs key steps in QSP model development and analyses. The capabilities of gQSPSim include (i) model calibration using global and local optimization methods, (ii) development of virtual subjects to explore variability and uncertainty in the represented biology, and (iii) simulations of virtual populations for different interventions. gQSPSim works with SimBiology-built models using components such as species, doses, variants, and rules. All functionalities are equipped with an interactive visualization interface and the ability to generate presentation-ready figures. In addition, standardized gQSPSim sessions can be shared and saved for future extension and reuse. In this work, we demonstrate gQSPSim's capabilities with a standard target-mediated drug disposition model and a published model of anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) treatment of hypercholesterolemia.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Hipercolesterolemia/tratamento farmacológico , Pró-Proteína Convertase 9/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Simulação por Computador , Desenvolvimento de Medicamentos/instrumentação , Descoberta de Drogas/instrumentação , Humanos , Hipercolesterolemia/metabolismo , Modelos Biológicos , Inibidores de PCSK9 , Padrões de Referência , Reprodutibilidade dos Testes , Software , Incerteza , Interface Usuário-Computador , Fluxo de Trabalho
11.
Sci Transl Med ; 10(463)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333240

RESUMO

A primary barrier to the success of T cell-recruiting bispecific antibodies in the treatment of solid tumors is the lack of tumor-specific targets, resulting in on-target off-tumor adverse effects from T cell autoreactivity to target-expressing organs. To overcome this, we developed an anti-HER2/CD3 T cell-dependent bispecific (TDB) antibody that selectively targets HER2-overexpressing tumor cells with high potency, while sparing cells that express low amounts of HER2 found in normal human tissues. Selectivity is based on the avidity of two low-affinity anti-HER2 Fab arms to high target density on HER2-overexpressing cells. The increased selectivity to HER2-overexpressing cells is expected to mitigate the risk of adverse effects and increase the therapeutic index. Results included in this manuscript not only support the clinical development of anti-HER2/CD3 1Fab-immunoglobulin G TDB but also introduce a potentially widely applicable strategy for other T cell-directed therapies. The potential of this discovery has broad applications to further enable consideration of solid tumor targets that were previously limited by on-target, but off-tumor, autoimmunity.


Assuntos
Afinidade de Anticorpos/imunologia , Complexo CD3/imunologia , Citotoxicidade Imunológica , Receptor ErbB-2/imunologia , Anticorpos Biespecíficos/imunologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Ativação Linfocitária/imunologia , Ligação Proteica
12.
J Pharmacokinet Pharmacodyn ; 45(2): 259-275, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302838

RESUMO

Modeling and simulation (M&S) is increasingly used in drug development to characterize pharmacokinetic-pharmacodynamic (PKPD) relationships and support various efforts such as target feasibility assessment, molecule selection, human PK projection, and preclinical and clinical dose and schedule determination. While model development typically require mathematical modeling expertise, model exploration and simulations could in many cases be performed by scientists in various disciplines to support the design, analysis and interpretation of experimental studies. To this end, we have developed a versatile graphical user interface (GUI) application to enable easy use of any model constructed in SimBiology® to execute various common PKPD analyses. The MATLAB®-based GUI application, called gPKPDSim, has a single screen interface and provides functionalities including simulation, data fitting (parameter estimation), population simulation (exploring the impact of parameter variability on the outputs of interest), and non-compartmental PK analysis. Further, gPKPDSim is a user-friendly tool with capabilities including interactive visualization, exporting of results and generation of presentation-ready figures. gPKPDSim was designed primarily for use in preclinical and translational drug development, although broader applications exist. gPKPDSim is a MATLAB®-based open-source application and is publicly available to download from MATLAB® Central™. We illustrate the use and features of gPKPDSim using multiple PKPD models to demonstrate the wide applications of this tool in pharmaceutical sciences. Overall, gPKPDSim provides an integrated, multi-purpose user-friendly GUI application to enable efficient use of PKPD models by scientists from various disciplines, regardless of their modeling expertise.


Assuntos
Desenvolvimento de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo , Simulação por Computador , Humanos , Modelos Biológicos , Software
14.
Br J Pharmacol ; 174(22): 4173-4185, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28859225

RESUMO

BACKGROUND AND PURPOSE: The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. EXPERIMENTAL APPROACH: We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against ß-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. KEY RESULTS: Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-ß (Aß) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40 nM, resulting in a ~50% reduction of Aß in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aß levels and had a low (~0.6 nM) antibody concentration in the brain. CONCLUSION AND IMPLICATIONS: I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aß concentrations, due to enhanced brain exposure to antibody.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/farmacocinética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/imunologia , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/líquido cefalorraquidiano , Ácido Aspártico Endopeptidases/imunologia , Encéfalo/metabolismo , Feminino , Infusões Intraventriculares , Macaca fascicularis
15.
NPJ Syst Biol Appl ; 3: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649441

RESUMO

Approximately 10% of colorectal cancers harbor BRAFV600E mutations, which constitutively activate the MAPK signaling pathway. We sought to determine whether ERK inhibitor (GDC-0994)-containing regimens may be of clinical benefit to these patients based on data from in vitro (cell line) and in vivo (cell- and patient-derived xenograft) studies of cetuximab (EGFR), vemurafenib (BRAF), cobimetinib (MEK), and GDC-0994 (ERK) combinations. Preclinical data was used to develop a mechanism-based computational model linking cell surface receptor (EGFR) activation, the MAPK signaling pathway, and tumor growth. Clinical predictions of anti-tumor activity were enabled by the use of tumor response data from three Phase 1 clinical trials testing combinations of EGFR, BRAF, and MEK inhibitors. Simulated responses to GDC-0994 monotherapy (overall response rate = 17%) accurately predicted results from a Phase 1 clinical trial regarding the number of responding patients (2/18) and the distribution of tumor size changes ("waterfall plot"). Prospective simulations were then used to evaluate potential drug combinations and predictive biomarkers for increasing responsiveness to MEK/ERK inhibitors in these patients.

16.
Mol Pharm ; 14(8): 2690-2696, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28631484

RESUMO

Intravitreally (IVT) injected macromolecules for the treatment of age-related macular degeneration must permeate through the inner limiting membrane (ILM) into the retina and through the retinal pigment epithelium (RPE) to enter the choroid. A quantitative understanding of intraocular transport mechanisms, elimination pathways, and the effect of molecular size is currently incomplete. We present a semimechanistic, 3-compartment (retina, vitreous, and aqueous) pharmacokinetic (PK) model, expressed using linear ordinary differential equations (ODEs), to describe the molecular concentrations following a single IVT injection. The model was fit to experimental rabbit data, with Fab, Fc, IgG, and IgG null antibodies and antibody fragments, to estimate key ocular pharmacokinetic parameters. The model predicts an ocular half-life, t1/2, which is the same for all compartments and dependent on the hydrodynamic radius (Rh) of the respective molecules, consistent with observations from the experimental data. Estimates of the permeabilities of the RPE and ILM are derived for Rh values ranging from 2.5 to 4.9 nm, and are found to be in good agreement with ex-vivo measurements from bovine eyes. We show that the ratio of these permeabilities largely determines the ratio of the molecular concentrations in the retina and vitreal compartments and their dependence on Rh. The model further provides estimates for the ratio of fluxes corresponding to the elimination pathways from the eye, i.e., aqueous humor to retina/choroid, which increase from 5:1 to 7:1 as Rh decreases. Our semimechanistic model provides a quantitative framework for interpreting ocular PK and the effects of molecule size on rate-determining parameters. We have shown that intraocular permeabilities can be reasonably estimated from 3-compartment ocular PK data and can determine how these parameters influence the half-life, retinal permeation, and elimination of intravitreally injected molecules from the eye.


Assuntos
Anticorpos/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Anticorpos/administração & dosagem , Corioide/metabolismo , Imunoglobulina G/metabolismo , Injeções Intravítreas , Modelos Teóricos , Coelhos , Corpo Vítreo/metabolismo
17.
AAPS J ; 19(1): 130-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27679517

RESUMO

Antibody drug conjugates (ADC), in which small molecule cytotoxic agents are non-specifically linked to antibodies, can enable targeted delivery of chemotherapeutics to tumor cells. ADCs are often produced and administered as a mixture of conjugated antibodies with different drug to antibody ratios (DAR) resulting in complex and heterogeneous disposition kinetics. We developed a mechanism-based platform model that can describe and predict the complex pharmacokinetic (PK) behavior of ADCs with protease-cleavable valine-citrulline (VC) linker linked to Monomethylmonomethyl auristatin F/E by incorporating known mechanisms of ADC disposition. The model includes explicit representation of all DAR species; DAR-dependent sequential deconjugation of the drug, resulting in the conversion of higher DAR to lower DAR species; and DAR-dependent antibody/ADC clearance. PK profiles of multiple analytes (total antibody, drug-conjugated antibody, and/or antibody-conjugated drug) for different ADC molecules and targets in rodents and cynomolgus monkeys were used for model development. The integrated cross-species model was successful in capturing the multi-analyte PK profiles after administration of purified ADCs with defined DAR species and ADCs with mixtures of DAR. Human PK predictions for DSTP3086S (anti-STEAP1-vc-MMAE) with the platform model agreed well with PK (total antibody and antibody-conjugated drug concentrations) measurements in the dose-ranging phase I clinical study. The integrated model is applicable to various other ADCs with different formats, conjugated drugs, and linkers, and provides a valuable tool for the exploration of mechanisms governing disposition of ADCs and enables translational predictions.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Modelos Biológicos , Oligopeptídeos/farmacocinética , Animais , Simulação por Computador , Humanos , Oligopeptídeos/química , Pesquisa Translacional Biomédica
18.
Eur J Pharm Biopharm ; 101: 53-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26820920

RESUMO

Treatment of diseases of the central nervous system by monoclonal antibodies may be limited by the restricted uptake of antibodies across the blood-brain barrier (BBB). An antibody targeting transferrin receptor (TfR) has been shown to take advantage of the receptor-mediated transcytosis properties of TfR in order to cross the BBB in mice, with the uptake in the brain being dependent on the affinity to TfR. In the bispecific format with arms targeting both TfR and ß-secretase 1 (BACE1), altering the affinity to TfR has been shown to impact systemic exposure and safety profiles. In this work, a mathematical model incorporating pharmacokinetic/pharmacodynamic (PKPD) and safety profiles is developed for bispecific TfR/BACE1 antibodies with a range of affinities to TfR in order to guide candidate selection. The model captures the dependence of both systemic and brain exposure on TfR affinity and the subsequent impact on brain Aß40 lowering and circulating reticulocyte levels. Model simulations identify the optimal affinity for the TfR arm of the bispecific to maximize Aß reduction while maintaining reticulocyte levels. The model serves as a useful tool to prioritize and optimize preclinical studies and has been used to support the selection of additional candidates for further development.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/farmacocinética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Receptores da Transferrina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Camundongos , Modelos Teóricos , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Transcitose/efeitos dos fármacos , Transferrina/metabolismo
19.
J Lipid Res ; 57(1): 46-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26522778

RESUMO

The recent failures of cholesteryl ester transport protein inhibitor drugs to decrease CVD risk, despite raising HDL cholesterol (HDL-C) levels, suggest that pharmacologic increases in HDL-C may not always reflect elevations in reverse cholesterol transport (RCT), the process by which HDL is believed to exert its beneficial effects. HDL-modulating therapies can affect HDL properties beyond total HDL-C, including particle numbers, size, and composition, and may contribute differently to RCT and CVD risk. The lack of validated easily measurable pharmacodynamic markers to link drug effects to RCT, and ultimately to CVD risk, complicates target and compound selection and evaluation. In this work, we use a systems pharmacology model to contextualize the roles of different HDL targets in cholesterol metabolism and provide quantitative links between HDL-related measurements and the associated changes in RCT rate to support target and compound evaluation in drug development. By quantifying the amount of cholesterol removed from the periphery over the short-term, our simulations show the potential for infused HDL to treat acute CVD. For the primary prevention of CVD, our analysis suggests that the induction of ApoA-I synthesis may be a more viable approach, due to the long-term increase in RCT rate.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , HDL-Colesterol/metabolismo , Hipolipemiantes/farmacologia , Apolipoproteína A-I/biossíntese , Apolipoproteína A-I/efeitos dos fármacos , Apolipoproteína A-I/metabolismo , Transporte Biológico , Biomarcadores/sangue , Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Modelos Biológicos , Quinazolinas/farmacologia , Quinazolinonas , Fatores de Risco , Regulação para Cima
20.
Invest Ophthalmol Vis Sci ; 56(9): 5390-400, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26275136

RESUMO

PURPOSE: To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody. METHODS: Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship. RESULTS: After IVT injection, differences in vitreal half-life observed across all molecules ranged between 3.2 and 5.2 days. Modification or elimination of the fragment crystallizable (Fc) region reduced serum half-life from 9 days for the IgG to 5 days for the neonatal Fc receptor (FcRn) null mAb, to 3.1 to 3.4 days for the other formats. The F(ab')2 was the optimal format for ocular therapeutics with comparable vitreal half-life to full-length antibodies, but with minimized systemic exposure. Concomitantly, the consistency among mathematical model predictions and observed data validated the model for future PK predictions. In addition, we showed a novel design to develop bispecific antibodies, here with activity targeting multiple angiogenesis pathways. CONCLUSIONS: We demonstrated that protein molecular weight and Fc region do not play a critical role in ocular PK, as they do systemically. Moreover, the mathematical model supports the selection of the "ideal therapeutic" by predicting ocular and systemic PK of any antibody format for any dose regimen. These findings have important implications for the design and selection of ocular therapeutics according to treatment needs, such as maximizing ocular half-life and minimizing systemic exposure.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos/imunologia , Desenho de Fármacos , Oftalmopatias/tratamento farmacológico , Olho/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Afinidade de Anticorpos , Oftalmopatias/imunologia , Oftalmopatias/metabolismo , Injeções Intravítreas , Masculino , Ligação Proteica , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...