Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(16): 7295-7300, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233364

RESUMO

Among molecular building blocks, metal oxide cluster anions and their countercations provide multiple options for the self-assembly of functional materials. Currently, however, rational design concepts are limited to electrostatic interactions with metal or organic countercations or to the attachment and subsequent reactions of functionalized organic ligands. We now demonstrate that bridging µ-oxo linkages can be used to string together a bifunctional Keggin anion building block, [PNb2Mo10O40]5- (1), the diniobium(V) analogue of [PV2Mo10O40]5- (2). Induction of µ-oxo ligation between the NbV═O moieties of 1 in acetonitrile via step-growth polymerization gives linear polymers with entirely inorganic backbones, some comprising over 140 000 repeating units, each with a 3- charge, exceeding that of previously reported organic or inorganic polyelectrolytes. As the chain grows, its flexible µ-oxo-linked backbone, with associated countercations, coils into a compact 270 nm diameter spherical secondary structure as a result of electrostatic interactions not unlike those within ionic lattices. More generally, the findings point to new options for the rational design of multidimensional structures based on µ-oxo linkages between NbV═O-functionalized building blocks.

2.
J Am Chem Soc ; 141(36): 14078-14082, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31411886

RESUMO

The selective uptake of guests by capsules, cages, and containers, and porous solid-state materials such as zeolites and metal-organic frameworks (MOFs), is generally controlled by pore size and by the dimensions and chemical properties of interior host domains. For soluble and solid-state structures, however, few options are available for modifying their outer pores to impart chemoselectivity to the uptake of similarly sized guests. We now show that by using alkane-coated gold cores as structural building units (SBUs) for the hydrophobic self-assembly of water-soluble suprasphere hosts, ligand exchange can be used to tailor the chemical properties at the pores that provide access to their interiors. For polar polyethylene glycol functionalized ligands, occupancies after equal times increase linearly with the dipole moments of chloro-, nitro- dichloro-, and dinitro- (o-, m-, and p-) benzene guests. Selectivity is reversed, however, upon incorporation of hydrophobic ligands. The findings demonstrate how self-assembled gold-core SBUs, with replaceable ligands, inherently provide for rationally introducing finely tuned and quantitatively predictable chemoselectivity to host-guest chemistry in water.

3.
Nat Commun ; 9(1): 4896, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459390

RESUMO

While molecular water-oxidation catalysts are remarkably rapid, oxidative and hydrolytic processes in water can convert their active transition metals to colloidal metal oxides or hydroxides that, while quite reactive, are insoluble or susceptible to precipitation. In response, we propose using oxidatively-inert ligands to harness the metal oxides themselves. This approach is demonstrated by covalently attaching entirely inorganic oxo-donor ligands (polyoxometalates) to 3-nm hematite cores, giving soluble anionic structures, highly resistant to aggregation, yet thermodynamically stable to oxidation and hydrolysis. Using orthoperiodate (at pH 8), and no added photosensitizers, the hematite-core complex catalyzes visible-light driven water oxidation for seven days (7600 turnovers) with no decrease in activity, far exceeding the documented lifetimes of molecular catalysts under turnover conditions in water. As such, a fundamental limitation of molecular complexes is entirely bypassed by using coordination chemistry to harness a transition-metal oxide as the reactive center of an inherently stable, homogeneous water-oxidation catalyst.

4.
Angew Chem Int Ed Engl ; 56(25): 7083-7087, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28508392

RESUMO

The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle-like organizations. Using cryo-TEM imaging and 1 H DOSY NMR spectroscopy, we then provide an unprecedented "solution-state" picture of how the micelle-like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water-soluble assemblies.

5.
Inorg Chem ; 54(22): 10521-3, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26536393

RESUMO

In bottom-up synthesis, products from reactions of structural building units rapidly pass from soluble molecular complexes to nanoscale intermediates, whose solution-state structures defy elucidation by any routine method. To address this, electron diffraction is used to reveal the structures of cryogenically "trapped" colloidal nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA