Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 16(1): 109, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155390

RESUMO

BACKGROUND: Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS: We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS: Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.


Assuntos
Cromatina , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Humanos , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Cromatina/genética , Cromatina/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Histonas/metabolismo , Ubiquitinação/efeitos dos fármacos
2.
Cancer Cell Int ; 24(1): 56, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317193

RESUMO

BACKGROUND: About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and ß4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS: H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS: H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and ß4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS: Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.

3.
Cells ; 12(21)2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947656

RESUMO

Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Endoteliais/metabolismo , Insuficiência Cardíaca/genética
4.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511047

RESUMO

Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Óxido Nítrico/metabolismo , Dacarbazina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Ciclo Celular , Células-Tronco/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
5.
Eur J Intern Med ; 114: 15-22, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277249

RESUMO

Epigenetics is a rapidly growing field of biology that studies the changes in gene expression that are not due to alterations in the DNA sequence but rather the chemical modifications of DNA and its associated proteins. Epigenetic mechanisms can profoundly influence gene expression, cell differentiation, tissue development, and disease susceptibility. Understanding epigenetic changes is essential to elucidate the mechanisms underlying the increasingly recognized role of environmental and lifestyle factors in health and disease and the intergenerational transmission of phenotypes. Recent studies suggest epigenetics may be critical in various diseases, from cardiovascular disease and cancer to neurodevelopmental and neurodegenerative disorders. Epigenetic modifications are potentially reversible and could provide new therapeutic avenues for treating these diseases using epigenetic modulators. Moreover, epigenetics provide insight into disease pathogenesis and biomarkers for disease diagnosis and risk stratification. Nevertheless, epigenetic interventions have the potential for unintended consequences and may potentially lead to increased risks of unexpected outcomes, such as adverse drug reactions, developmental abnormalities, and cancer. Therefore, rigorous studies are essential to minimize the risks associated with epigenetic therapies and to develop safe and effective interventions for improving human health. This article provides a synthetic and historical view of the origin of epigenetics and some of the most relevant achievements.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Epigênese Genética , Neoplasias/genética
6.
Basic Res Cardiol ; 118(1): 16, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140699

RESUMO

The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Metilação de DNA , Epigênese Genética , Insuficiência Cardíaca/genética , Doenças Cardiovasculares/genética , Coração
8.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047437

RESUMO

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Assuntos
Fragilidade , Longevidade , Humanos , Camundongos , Animais , Idoso , Longevidade/genética , Fragilidade/genética , Camundongos Endogâmicos C57BL , Epigênese Genética , Biomarcadores , Terapia Genética , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética
9.
Geroscience ; 45(4): 2195-2211, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36702990

RESUMO

Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals.


Assuntos
Fragilidade , Humanos , Animais , Camundongos , Idoso , Idoso Fragilizado , Avaliação Geriátrica/métodos , Camundongos Endogâmicos C57BL , Envelhecimento
10.
11.
Cells ; 11(22)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428974

RESUMO

Redox imbalance of the endothelial cells (ECs) plays a causative role in a variety of cardiovascular diseases. In order to better understand the molecular mechanisms of the endothelial response to oxidative stress, the involvement of circular RNAs (circRNAs) was investigated. CircRNAs are RNA species generated by a "back-splicing" event, which is the covalent linking of the 3'- and 5'-ends of exons. Bioinformatics analysis of the transcriptomic landscape of human ECs exposed to H2O2 allowed us to identify a subset of highly expressed circRNAs compared to their linear RNA counterparts, suggesting a potential biological relevance. Specifically, circular Ankyrin Repeat Domain 12 (circANKRD12), derived from the junction of exon 2 and exon 8 of the ANKRD12 gene (hsa_circ_0000826), was significantly induced in H2O2-treated ECs. Conversely, the linear RNA isoform of ANKRD12 was not modulated. An increased circular-to-linear ratio of ANKRD12 was also observed in cultured ECs exposed to hypoxia and in skeletal muscle biopsies of patients affected by critical limb ischemia (CLI), two conditions associated with redox imbalance and oxidative stress. The functional relevance of circANKRD12 was shown by the inhibition of EC formation of capillary-like structures upon silencing of the circular but not of the linear isoform of ANKRD12. Bioinformatics analysis of the circANKRD12-miRNA-mRNA regulatory network in H2O2-treated ECs identified the enrichment of the p53 and Foxo signaling pathways, both crucial in the cellular response to redox imbalance. In keeping with the antiproliferative action of the p53 pathway, circANKRD12 silencing inhibited EC proliferation. In conclusion, this study indicates circANKRD12 as an important player in ECs exposed to oxidative stress.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Nucleares/metabolismo
12.
Cancers (Basel) ; 14(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35740569

RESUMO

BACKGROUND: Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). METHODS: We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. RESULTS: In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. CONCLUSIONS: These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.

13.
Ageing Res Rev ; 77: 101610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338919

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , MicroRNAs , RNA Longo não Codificante , Envelhecimento/genética , Doenças Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Coração , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética
14.
Antioxid Redox Signal ; 36(10-12): 685-706, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34521246

RESUMO

Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.


Assuntos
Diabetes Mellitus , MicroRNAs , Neovascularização Patológica , Proliferação de Células/genética , Diabetes Mellitus/genética , Humanos , Hipóxia/genética , MicroRNAs/genética , Neovascularização Patológica/genética
15.
Life (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947954

RESUMO

Nitric oxide (NO) is a diffusible signaling molecule produced by three isoforms of nitric oxide synthase, which release NO during the metabolism of the amino acid arginine. NO participates in pathophysiological responses of many different tissues, inducing concentration-dependent effect. Indeed, while low NO levels generally have protective effects, higher NO concentrations induce cytotoxic/cytostatic actions. In recent years, evidences have been accumulated unveiling S-nitrosylation as a major NO-dependent post-translational mechanism ruling gene expression. S-nitrosylation is a reversible, highly regulated phenomenon in which NO reacts with one or few specific cysteine residues of target proteins generating S-nitrosothiols. By inducing this chemical modification, NO might exert epigenetic regulation through direct effects on both DNA and histones as well as through indirect actions affecting the functions of transcription factors and transcriptional co-regulators. In this light, S-nitrosylation may also impact on cancer cell gene expression programs. Indeed, it affects different cell pathways and functions ranging from the impairment of DNA damage repair to the modulation of the activity of signal transduction molecules, oncogenes, tumor suppressors, and chromatin remodelers. Nitrosylation is therefore a versatile tool by which NO might control gene expression programs in health and disease.

16.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200325

RESUMO

The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).


Assuntos
Envelhecimento/genética , COVID-19/genética , COVID-19/fisiopatologia , Ilhas de CpG , Encurtamento do Telômero , Telômero/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/sangue , Biomarcadores , COVID-19/complicações , COVID-19/etiologia , Metilação de DNA , Dipeptidil Peptidase 4/sangue , Epigenômica , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sobreviventes , Síndrome de COVID-19 Pós-Aguda
18.
Cell Death Dis ; 12(5): 435, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934122

RESUMO

Hypoxia-induced miR-210 is a crucial component of the tissue response to ischemia, stimulating angiogenesis and improving tissue regeneration. Previous analysis of miR-210 impact on the transcriptome in a mouse model of hindlimb ischemia showed that miR-210 regulated not only vascular regeneration functions, but also inflammation. To investigate this event, doxycycline-inducible miR-210 transgenic mice (Tg-210) and anti-miR-210 LNA-oligonucleotides were used. It was found that global miR-210 expression decreased inflammatory cells density and macrophages accumulation in the ischemic tissue. To dissect the underpinning cell mechanisms, Tg-210 mice were used in bone marrow (BM) transplantation experiments and chimeric mice underwent hindlimb ischemia. MiR-210 overexpression in the ischemic tissue was sufficient to increase capillary density and tissue repair, and to reduce inflammation in the presence of Wt-BM infiltrating cells. Conversely, when Tg-210-BM cells migrated in a Wt ischemic tissue, dysfunctional angiogenesis, inflammation, and impaired tissue repair, accompanied by fibrosis were observed. The fibrotic regions were positive for α-SMA, Vimentin, and Collagen V fibrotic markers and for phospho-Smad3, highlighting the activation of TGF-ß1 pathway. Identification of Tg-210 cells by in situ hybridization showed that BM-derived cells contributed directly to fibrotic areas, where macrophages co-expressing fibrotic markers were observed. Cell cultures of Tg-210 BM-derived macrophages exhibited a pro-fibrotic phenotype and were enriched with myofibroblast-like cells, which expressed canonical fibrosis markers. Interestingly, inhibitors of TGF-ß type-1-receptor completely abrogated this pro-fibrotic phenotype. In conclusion, a context-dependent regulation by miR-210 of the inflammatory response was identified. miR-210 expression in infiltrating macrophages is associated to improved angiogenesis and tissue repair when the ischemic recipient tissue also expresses high levels of miR-210. Conversely, when infiltrating an ischemic tissue with mismatched miR-210 levels, macrophages expressing high miR-210 levels display a pro-fibrotic phenotype, leading to impaired tissue repair, fibrosis, and dysfunctional angiogenesis.


Assuntos
Fibrose/patologia , Membro Posterior/irrigação sanguínea , Inflamação/metabolismo , Isquemia/patologia , MicroRNAs/metabolismo , Doença Aguda , Animais , Transplante de Medula Óssea , Fibrose/genética , Fibrose/metabolismo , Isquemia/genética , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
19.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375130

RESUMO

The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes growth and progression in prostate cancer (PCa); however, little is known about its possible impact in PCa metabolism. The aim of this work has been the assessment of the metabolic reprogramming associated with MALAT1 silencing in human PCa cells and in an ex vivo model of organotypic slice cultures (OSCs). Cultured cells and OSCs derived from primary tumors were transfected with MALAT1 specific gapmers. Cell growth and survival, gene profiling, and evaluation of targeted metabolites and metabolic enzymes were assessed. Computational analysis was made considering expression changes occurring in metabolic markers following MALAT1 targeting in cultured OSCs. MALAT1 silencing reduced expression of some metabolic enzymes, including malic enzyme 3, pyruvate dehydrogenase kinases 1 and 3, and choline kinase A. Consequently, PCa metabolism switched toward a glycolytic phenotype characterized by increased lactate production paralleled by growth arrest and cell death. Conversely, the function of mitochondrial succinate dehydrogenase and the expression of oxidative phosphorylation enzymes were markedly reduced. A similar effect was observed in OSCs. Based on this, a predictive algorithm was developed aimed to predict tumor recurrence in a subset of patients. MALAT1 targeting by gapmer delivery restored normal metabolic energy pathway in PCa cells and OSCs.

20.
Clin Epigenetics ; 12(1): 156, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087172

RESUMO

Epigenetics is a relatively new field of science that studies the genetic and non-genetic aspects related to heritable phenotypic changes, frequently caused by environmental and metabolic factors. In the host, the epigenetic machinery can regulate gene expression through a series of reversible epigenetic modifications, such as histone methylation and acetylation, DNA/RNA methylation, chromatin remodeling, and non-coding RNAs. The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread worldwide, causes it. COVID-19 severity and consequences largely depend on patient age and health status. In this review, we will summarize and comparatively analyze how viruses regulate the host epigenome. Mainly, we will be focusing on highly pathogenic respiratory RNA virus infections such as coronaviruses. In this context, epigenetic alterations might play an essential role in the onset of coronavirus disease complications. Although many therapeutic approaches are under study, more research is urgently needed to identify effective vaccine or safer chemotherapeutic drugs, including epigenetic drugs, to cope with this viral outbreak and to develop pre- and post-exposure prophylaxis against COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Epigênese Genética , Regulação Viral da Expressão Gênica , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/genética , COVID-19 , Infecções por Coronavirus/imunologia , Citocinas/genética , Citocinas/imunologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Inflamação/imunologia , Pandemias , Pneumonia Viral/imunologia , Processamento Pós-Transcricional do RNA , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA