Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 28(8): 1535-1544, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36389093

RESUMO

Quantitative real-time PCR (RT-qPCR) is used extensively in gene expression studies. For adequate comparisons, the identification and use of reliable reference genes are crucial. Nevertheless, the availability of such genes in strawberry species is limited and has yet to be described for the Chilean strawberry, Fragaria chiloensis. In this study, the expression dynamics of a set of 10 candidate reference genes were analyzed in various F. chiloensis vegetative tissues (root, runners, stem, leaf, and flower), and fruits at different ripening stages or subjected to different hormonal treatments (ABA, auxin). The expression stability of candidate genes was examined by a series of algorithms, such as geNorm, NormFinder, BestKeeper, and ΔCt, for comparisons and rankings. Finally, by using RefFinder, a comprehensive and comparative ranking of the four methods was achieved. The results highlight that the expression stability of candidate reference genes fluctuates depending on tissue type, fruit stage, and hormonal treatment. As reference genes, the use of FcCHP2 and FcACTIN1 is recommended for F. chiloensis vegetative tissues; FcDBP and FcCHP1 for fruit ripening stages; FcGAPDH and FcDBP for fruit subjected to ABA and NDGA treatments; FcCHP1 and FcCHP2 for fruit under AUXIN and TIBA treatments; and FcDBP and FcCHP2 when all fruit stages and hormonal treatments are compared. If just one reference gene is employed as a normalizer, FcDBP should be chosen as it is the most stable internal control in most conditions. Therefore, the present study delivers a set of reliable reference genes for RT-qPCR expression analysis in F. chiloensis tissues and fruits subjected to several hormonal treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01227-y.

2.
Front Plant Sci ; 13: 976901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204060

RESUMO

Fragaria chiloensis (Chilean strawberry) is a native species that produces fruit with an exotic pinkish color and a fruity aroma. It has a non-climacteric pattern of fruit ripening, and it is the mother of the commercial Fragaria x ananassa. The ripening of F. chiloensis fruit seems stimulated by ABA, and a complete set of genes participate in its softening, color, and aroma development. In addition, a set of transcription factors regulate the entire process, but few of them have been described. Over the last two decades, RNA-seq was used to identify genes at three fruit development/ripening stages, named C2 (unripe, large green) to C4 (full ripe), in whole fruit and fruit without achenes. A total of 204,754 contigs were assembled considering all samples, obtaining an N50 of 1.125 bp. Differentially expressed genes (DEGs) between two samples were identified, obtaining a total of 77,181 DEGs. Transcripts for genes involved in ABA biosynthesis present high and differential expression during the C2, C3, and C4 stages. Besides, contigs corresponding to ABA receptors, which interact with a regulatory network, are also differentially expressed. Genes associated with cell wall remodeling and those involved in flavonoid synthesis were also differentially expressed. An interaction network was built considering differentially expressed genes for the phenylpropanoid and flavonoid molecular pathways and having FcMYB1 as a transcription factor regulator. Identifying key genes could give an option to control the ripening of this non-climacteric fruit.

3.
Antioxidants (Basel) ; 11(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36139713

RESUMO

Anthocyanins are plant pigments derived from the phenylpropanoid pathway which are produced in many different species, contributing to defense against stresses by their antioxidant properties. Cultivated tomatoes cannot synthesize flavonoids; however, wild tomatoes such as Solanum chilense and Solanum lycopersicoides have anthocyanin pigmented skin. Other wild tomato species such as Solanum peruvianum have been poorly studied concerning anthocyanin accumulation in the fruit. This research is the first to address the regulation of anthocyanin biosynthesis mediated by drought stress and light radiation in S. peruvianum fruit. Transcript accumulation of SpAN2, encoding for a key MYB type transcription factor for the regulation of anthocyanin biosynthesis, was induced in the fruit of plants exposed to drought treatment. In addition, fruit peel accumulates a greater anthocyanin content in water deficit-treated plants. The expression of SpAN2 was also regulated according to sunlight exposure, reaching a higher expression during maximal daily UV radiation and under controlled UV-B treatments. Similar results were observed for the expression of the late flavonoid biosynthetic gene dihydroflavonol 4-reductase (SpDFR). These results suggest that SpAN2 and SpDFR are involved in anthocyanin biosynthesis under drought stress and UV radiation in S. peruvianum.

4.
Front Plant Sci ; 11: 1002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719706

RESUMO

Two interesting plants within the Chilean flora (wild and crop species) can be found with a history related to modern fruticulture: Fragaria chiloensis subsp. chiloensis (Rosaceae) and Vasconcellea pubescens (Caricaceae). Both species have a wide natural distribution, which goes from the Andes mountains to the sea (East-West), and from the Atacama desert to the South of Chile (North-South). The growing locations are included within the Chilean Winter Rainfall-Valdivian Forest hotspot. Global warming is of great concern as it increases the risk of losing wild plant species, but at the same time, gives a chance for usually longer term genetic improvement using naturally adapted material and the source for generating healthy foods. Modern agriculture intensifies the attractiveness of native undomesticated species as a way to provide compounds like antioxidants or tolerant plants for climate change scenario. F. chiloensis subsp. chiloensis as the mother of commercial strawberry (Fragaria × ananassa) is an interesting genetic source for the improvement of fruit flavor and stress tolerance. On the other hand, V. pubescens produces fruit with high level of antioxidants and proteolytic enzymes of interest to the food industry. The current review compiles the botanical, physiological and phytochemical description of F. chiloensis subsp. chiloensis and V. pubescens, highlighting their potential as functional foods and as source of compounds with several applications in the pharmaceutical, biotechnological, and food science. The impact of global warming scenario on the distribution of the species is also discussed.

5.
J Biomol Struct Dyn ; 37(12): 3245-3258, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30175949

RESUMO

Expansins are cell wall proteins associated with several processes, including changes in the cell wall during ripening of fruit, which matches softening of the fruit. We have previously reported an increase in expression of specific expansins transcripts during softening of Fragaria chiloensis fruit. Here, we characterized three α-expansins. Their full-length sequences were obtained, and through qRT-PCR (real-time PCR) analyses, their transcript accumulation during softening of F. chiloensis fruit was confirmed. Interestingly, differential but overlapping expression patterns were observed. With the aim of elucidating their roles, 3D protein models were built using comparative modeling methodology. The models obtained were similar and displayed cellulose binding module(CBM ) with a ß-sandwich structure, and a catalytic domain comparable to the catalytic core of protein of the family 45 glycosyl hydrolase. An open groove located at the central part of each expansin was described; however, the shape and size are different. Their protein-ligand interactions were evaluated, showing favorable binding affinity energies with xyloglucan, homogalacturonan, and cellulose, cellulose being the best ligand. However, small differences were observed between the protein-ligand conformations. Molecular mechanics-generalized Born-surface area (MM-GBSA) analyses indicate the major contribution of van der Waals forces and non-polar interactions. The data provide a dynamic view of interaction between expansins and cellulose as putative cell wall ligands at the molecular scale. Communicated by Ramaswamy H. Sarma.


Assuntos
Fragaria/química , Frutas/química , Proteínas de Plantas/química , Parede Celular/química , Celulose/química , Regulação da Expressão Gênica de Plantas/fisiologia , Glucanos/química , Ligantes , Simulação de Dinâmica Molecular , Pectinas/química , Conformação Proteica , Xilanos/química
6.
Plant Physiol Biochem ; 129: 158-167, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29883898

RESUMO

The equilibrium between protein synthesis and degradation is key to maintaining efficiency in different physiological processes. The proteinase inhibitor cystatin regulates protease activities in different developmental and physiological contexts. Here we describe for the first time the identification and the biological function of the cysteine protease inhibitor cystatin of Fragaria chiloensis, FchCYS1. Based on primary sequence and 3D-structural homology modelling, FchCYS1 is a type II phytocystatin with high identity to other cystatins of the Fragaria genus. Both the papain-like and the legumain-like protease inhibitory domains are indeed functional, based on in vitro assays performed with Escherichia coli protein extracts containing recombinant FchCYS1. FchCYS1 is differentially-expressed in achenes of F. chiloensis fruits, with highest expression as the fruit reaches the ripened stage, suggesting a role in preventing degradation of storage proteins that will nourish the embryo during seed germination. Furthermore, FchCYS1 responds transcriptionally to the application of salicylic acid and to mechanical injury, strongly suggesting that FchCYS1 could be involved in the response against pathogen attack. Overall these results point to a role for FchCYS1 in diverse physiological processes in F. chiloensis.


Assuntos
Cistatinas/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Cistatinas/fisiologia , Cisteína Endopeptidases/metabolismo , Escherichia coli , Fragaria/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Microrganismos Geneticamente Modificados , Papaína/metabolismo , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Transcriptoma
7.
PLoS One ; 11(4): e0153057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27078149

RESUMO

Aroma and flavor are important factors of fruit quality and consumer preference. The specific pattern of aroma is generated during ripening by the accumulation of volatiles compounds, which are mainly esters. Alcohol acyltransferase (AAT) (EC 2.3.1.84) catalyzes the esterification reaction of aliphatic and aromatic alcohols and acyl-CoA into esters in fruits and flowers. In Fragaria x ananassa, there are different volatiles compounds that are obtained from different alcohol precursors, where octanol and hexanol are the most abundant during fruit ripening. At present, there is not structural evidence about the mechanism used by the AAT to synthesize esters. Experimental data attribute the kinetic role of this enzyme to 2 amino acidic residues in a highly conserved motif (HXXXD) that is located in the middle of the protein. With the aim to understand the molecular and energetic aspects of volatiles compound production from F. x ananassa, we first studied the binding modes of a series of alcohols, and also different acyl-CoA substrates, in a molecular model of alcohol acyltransferase from Fragaria x ananassa (SAAT) using molecular docking. Afterwards, the dynamical behavior of both substrates, docked within the SAAT binding site, was studied using routine molecular dynamics (MD) simulations. In addition, in order to correlate the experimental and theoretical data obtained in our laboratories, binding free energy calculations were performed; which previous results suggested that octanol, followed by hexanol, presented the best affinity for SAAT. Finally, and concerning the SAAT molecular reaction mechanism, it is suggested from molecular dynamics simulations that the reaction mechanism may proceed through the formation of a ternary complex, in where the Histidine residue at the HXXXD motif deprotonates the alcohol substrates. Then, a nucleophilic attack occurs from alcohol charged oxygen atom to the carbon atom at carbonyl group of the acyl CoA. This mechanism is in agreement with previous results, obtained in our group, in alcohol acyltransferase from Vasconcellea pubescens (VpAAT1).


Assuntos
Aciltransferases/metabolismo , Álcoois/metabolismo , Fragaria/enzimologia , Proteínas de Plantas/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Aciltransferases/química , Aciltransferases/genética , Álcoois/química , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Ésteres/química , Ésteres/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
8.
J Mol Model ; 21(5): 115, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25863690

RESUMO

Fruit softening is associated to cell wall modifications produced by a set of hydrolytic enzymes and proteins. Expansins are proteins with no catalytic activity, which have been associated with several processes during plant growth and development. A role for expansins has been proposed during softening of fruits, and many fruit-specific expansins have been identified in a variety of species. A 3D model for VpEXPA2, an α-expansin involved in softening of Vasconcellea pubescens fruit, was built for the first time by comparative modeling strategy. The model was validated and refined by molecular dynamics simulation. The VpEXPA2 model shows a cellulose binding domain with a ß-sandwich structure, and a catalytic domain with a similar structure to the catalytic core of endoglucanase V (EGV) from Humicola insolens, formed by six ß-strands with interconnected loops. VpEXPA2 protein contains essential structural moieties related to the catalytic mechanism of EGV, such as the conserved HFD motif. Nevertheless, changes in the catalytic environment are observed in the protein model, influencing its mode of action. The lack of catalytic activity of this expansin and its preference for cellulose are discussed in light of the structural information obtained from the VpEXPA2 protein model, regarding the distance between critical amino acid residues. Finally, the VpEXPA2 model improves our understanding on the mechanism of action of α-expansins on plant cell walls during softening of V. pubescens fruit.


Assuntos
Carica/química , Modelos Moleculares , Proteínas de Plantas/química , Conformação Proteica , Sítios de Ligação , Simulação por Computador , Frutas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
9.
J Mol Graph Model ; 29(5): 635-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21146433

RESUMO

The aroma in fruits is an important attribute of quality that influences consumer's acceptance. This attribute is a complex character determined by a set of low molecular weight volatile compounds. In mountain papaya fruit (Vasconcellea pubescens) the aroma is determined mainly by esters, which are produced through an esterification reaction catalyzed by the enzyme alcohol acyltransferase (AAT) that utilizes alcohols and acyl-CoAs as substrates. In order to understand the molecular mechanism involved in the production of esters in this fruit, an AAT gene which has been previously cloned and characterized from mountain papaya (VpAAT1) was expressed in yeasts, and the highest enzyme activity of the recombinant protein was obtained when the enzyme was tested for its ability to produce benzyl acetate. On the other hand, to gain insight the mechanism of action at the molecular level, a structural model for VpAAT1 protein was built by comparative modelling methodology, which was validated and refined by molecular dynamics simulation. The VpAAT1 structure consists of two domains connected by a large crossover loop, with a solvent channel in the center of the structure formed between the two domains. Residues H166 and D170, important for catalytic action, displayed their side chains towards the central cavity of the channel allowing their interaction with the substrates. The conformational interaction between the protein and several ligands was explored by molecular docking simulations, and the predictions obtained were tested through kinetic analysis. Kinetic results showed that the lowest K(M) values were obtained for acetyl-CoA and benzyl alcohol. In addition, the most favorable predicted substrate orientation was observed for benzyl alcohol and acetyl CoA, showing a perfect coincidence between kinetic studies and molecular docking analysis.


Assuntos
Aciltransferases/química , Carica/anatomia & histologia , Carica/metabolismo , Ésteres/metabolismo , Frutas/enzimologia , Proteínas de Plantas/metabolismo , Conformação Proteica , Aciltransferases/genética , Aciltransferases/metabolismo , Álcoois/metabolismo , Sequência de Aminoácidos , Carica/química , Frutas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Odorantes , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
10.
J Agric Food Chem ; 58(8): 5114-21, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20369803

RESUMO

Mountain papaya ( Vasconcellea pubescens ) is a climacteric fruit that develops a strong and characteristic aroma during ripening. Esters are the main volatile compounds produced by the fruit, and most of them are dependent on ethylene. As esters are synthesized through alcohol acyltransferases (AAT), a full-length cDNA (VpAAT1) was isolated that displayed the characteristic motifs of most plant acyltransferases. The full-length cDNA sequence was cloned and expressed in yeasts, obtaining a functional enzyme with high AAT activity toward the formation of benzyl acetate. The transcript accumulation pattern provided by qPCR analysis showed that the VpAAT1 gene is expressed exclusively in fruit tissues and that a high level of transcripts is accumulated during ripening. The increase in VpAAT1 transcripts in fruit is coincident with the increase in AAT activity; transcript accumulation is induced by ethylene, and it is avoided by 1-methylcyclopropene (1-MCP) treatment. The data indicate that VpAAT1 is involved in aroma formation and that ethylene plays a major role in regulating its expression.


Assuntos
Carica/metabolismo , Proteínas/genética , Sequência de Aminoácidos , Carica/fisiologia , Ésteres , Dados de Sequência Molecular , Proteínas/química , Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
11.
J Agric Food Chem ; 57(19): 9123-32, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19731914

RESUMO

Fragaria chiloensis is characterized for having great aroma and flavor properties. Using headspace-SPME different volatile compounds were identified and quantified during development and ripening of the fruit. The headspace was dominated by esters, butyl acetate, ethyl acetate, ethyl butanoate and ethyl hexanoate being the most abundant in fully ripe fruit. As esters are important for aroma and synthesized through alcohol acyltransferases (AAT), a full-length cDNA (FcAAT1) was isolated from F. chiloensis fruit which displayed the three motifs characteristic of most AATs. As the production of esters increased during ripening, a clear increment in FcAAT1 transcripts was observed in fruit tissue. A good correlation was found between AAT activity and the total content of esters, especially with acetates and hexanoates. Aroma-related esters displayed during ripening the same production profile as AAT activity. Therefore it can be suggested that the FcAAT1 gene may have a significant role in ester production of F. chiloensis fruit.


Assuntos
Aciltransferases/genética , Fragaria , Frutas/crescimento & desenvolvimento , Odorantes/análise , Proteínas de Plantas/genética , DNA de Plantas/análise , DNA de Plantas/isolamento & purificação , Ésteres/metabolismo , Fragaria/enzimologia , Fragaria/genética , Frutas/química , Frutas/enzimologia , Expressão Gênica , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...